Learn More
L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of(More)
Neuronal L-type calcium channels are essential for regulating activity-dependent gene expression, but they are thought to open too slowly to contribute to action potential-dependent calcium entry. A complication of studying native L-type channels is that they represent a minor fraction of the whole-cell calcium current in most neurons. Dihydropyridine(More)
The postsynaptic density protein PSD-95 influences synaptic AMPA receptor (AMPAR) content and may play a critical role in LTD. Here we demonstrate that the effects of PSD-95 on AMPAR-mediated synaptic responses and LTD can be dissociated. Our findings suggest that N-terminal-domain-mediated dimerization is important for PSD-95's effect on basal synaptic(More)
PSD-95 and SAP97 are scaffolding proteins that have been implicated in regulating AMPA receptor incorporation and function at synapses. Gain- and loss-of-function approaches, however, have generated conflicting results. To minimize adaptations during development and potential dominant-negative effects of overexpression, we have combined silencing of(More)
Long-term potentiation (LTP) is accompanied by dendritic spine growth and changes in the composition of the postsynaptic density (PSD). We find that activity-dependent growth of apical spines of CA1 pyramidal neurons is accompanied by destabilization of the PSD that results in transient loss and rapid replacement of PSD-95 and SHANK2. Signaling through(More)
The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity, including NMDA receptor (NMDAR)-dependent long-term depression (LTD), but the molecular mechanisms responsible for this trafficking remain unknown. We found that PSD-95, a major postsynaptic density protein, is important for NMDAR-triggered endocytosis of synaptic(More)
Neuronal pentraxins (NPs) define a family of proteins that are homologous to C-reactive and acute-phase proteins in the immune system and have been hypothesized to be involved in activity-dependent synaptic plasticity. To investigate the role of NPs in vivo, we generated mice that lack one, two, or all three NPs. NP1/2 knock-out mice exhibited defects in(More)
Activity-dependent modification of excitatory synaptic transmission is a fundamental mechanism for developmental plasticity of the neural circuits and experience-dependent plasticity. Synaptic glutamatergic receptors including AMPA receptors and NMDA receptors (AMPARs and NMDARs) are embedded in the postsynaptic density, a highly organized protein network.(More)
The low barometric pressure at high altitude causes lower arterial oxygen content among Tibetan highlanders, who maintain normal levels of oxygen use as indicated by basal and maximal oxygen consumption levels that are consistent with sea level predictions. This study tested the hypothesis that Tibetans resident at 4,200 m offset physiological hypoxia and(More)
Although brain-derived neurotrophic factor (BDNF) is known to regulate circuit development and synaptic plasticity, its exact role in neuronal network activity remains elusive. Using mutant mice (TrkB-PV(-/-)) in which the gene for the BDNF receptor, tyrosine kinase B receptor (trkB), has been specifically deleted in parvalbumin-expressing, fast-spiking(More)