Learn More
L-type calcium channels couple membrane depolarization in neurons to numerous processes including gene expression, synaptic efficacy, and cell survival. To establish the contribution of L-type calcium channels to various signaling cascades, investigators have relied on their unique pharmacological sensitivity to dihydropyridines. The traditional view of(More)
Neuronal L-type calcium channels are essential for regulating activity-dependent gene expression, but they are thought to open too slowly to contribute to action potential-dependent calcium entry. A complication of studying native L-type channels is that they represent a minor fraction of the whole-cell calcium current in most neurons. Dihydropyridine(More)
The postsynaptic density protein PSD-95 influences synaptic AMPA receptor (AMPAR) content and may play a critical role in LTD. Here we demonstrate that the effects of PSD-95 on AMPAR-mediated synaptic responses and LTD can be dissociated. Our findings suggest that N-terminal-domain-mediated dimerization is important for PSD-95's effect on basal synaptic(More)
PSD-95 and SAP97 are scaffolding proteins that have been implicated in regulating AMPA receptor incorporation and function at synapses. Gain- and loss-of-function approaches, however, have generated conflicting results. To minimize adaptations during development and potential dominant-negative effects of overexpression, we have combined silencing of(More)
The endocytosis of AMPA receptors (AMPARs) underlies several forms of synaptic plasticity, including NMDA receptor (NMDAR)-dependent long-term depression (LTD), but the molecular mechanisms responsible for this trafficking remain unknown. We found that PSD-95, a major postsynaptic density protein, is important for NMDAR-triggered endocytosis of synaptic(More)
Long-term potentiation (LTP) is accompanied by dendritic spine growth and changes in the composition of the postsynaptic density (PSD). We find that activity-dependent growth of apical spines of CA1 pyramidal neurons is accompanied by destabilization of the PSD that results in transient loss and rapid replacement of PSD-95 and SHANK2. Signaling through(More)
Neuronal pentraxins (NPs) define a family of proteins that are homologous to C-reactive and acute-phase proteins in the immune system and have been hypothesized to be involved in activity-dependent synaptic plasticity. To investigate the role of NPs in vivo, we generated mice that lack one, two, or all three NPs. NP1/2 knock-out mice exhibited defects in(More)
Activity-dependent modification of excitatory synaptic transmission is a fundamental mechanism for developmental plasticity of the neural circuits and experience-dependent plasticity. Synaptic glutamatergic receptors including AMPA receptors and NMDA receptors (AMPARs and NMDARs) are embedded in the postsynaptic density, a highly organized protein network.(More)
Although brain-derived neurotrophic factor (BDNF) is known to regulate circuit development and synaptic plasticity, its exact role in neuronal network activity remains elusive. Using mutant mice (TrkB-PV(-/-)) in which the gene for the BDNF receptor, tyrosine kinase B receptor (trkB), has been specifically deleted in parvalbumin-expressing, fast-spiking(More)
In the postsynaptic density of glutamatergic synapses, the discs large (DLG)-membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins coordinates a multiplicity of signaling pathways to maintain and regulate synaptic transmission. Postsynaptic density-93 (PSD-93) is the most variable paralog in this family; it exists in six different(More)