Learn More
The gene encoding an alkaline lipase of Penicillium cyclopium PG37 was cloned with four steps of PCR amplification based on different principles. The cloned gene was 1,480 nucleotides in length, consisted of 94 bp of promoter region, and had 6 exons and 5 short introns ranging from 50 to 70 nucleotides. The open reading frame encoded a protein of 285 amino(More)
RNAi (RNA interference) is a gene-silencing mechanism that is conserved in evolution from worm to human and has been a powerful tool for gene functional research. It has been clear that the RNAi effect triggered by endogenous or exogenous siRNAs (small interfering RNAs) is transient and dose-dependent. However, there is little information on the regulation(More)
Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi),(More)
In Escherichia coli, the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) AroG catalyzes the first committed step in the biosynthesis of aromatic compounds. To investigate the feedback inhibition site of AroG, mutated enzymes prepared with sequence-overlap extension PCR were expressed and purified. The enzymatic activity(More)
Metabolic deregulation accompanying type II diabetes is characterized by insulin resistance in peripheral tissues (liver, muscle, and adipose), mediated by impairments in insulin receptor (IR) signaling. Protein tyrosine phosphatase 1B (PTP1B) has been shown to be a negative regulator of IR autophosphorylation and thus has been considered as a major(More)
RNA interference (RNAi) has been proved to be a promising strategy to combat Hepatitis B virus (HBV) infection by way of cell culture and animal model studies. In this work, esiRNAs (endoribonuclease-prepared siRNAs) targeting all of the four open reading frames (ORFs) of HBV genome were prepared. In vitro experiment showed that esiHBVP suppressed HBsAg(More)
Overexpression of squamous cell carcinoma antigen 1 (SCCA1) in hepatitis G2 (HepG2) and Chinese hamster ovary cells can increase hepatitis B virus (HBV) binding capacity by interacting with the preS1 domain of the HBV surface antigen. However, the magnitude of increase in binding capacity was higher by several orders in the former, indicating the existence(More)
Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (α-ε; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis. Here, we have studied the functional(More)
The HBx protein of human hepatitis B virus (HBV) activates a calcium-dependent kinase pathway which is essential for the viral replication. In this study, we found that HBx expression in the absence of other HBV proteins and in the context of HBV replication decreased the mitochondrial calcein-AM/CoCl(2) signals by 10% and 14% in HepG2 cells and by 15% and(More)
Multidrug resistance following initial chemotherapy is commonly associated with MDR1 gene encoding for P-glycoprotein (P-gp). RNA interference of MDR1 gene expression was used as a strategy to reverse MDR1-mediated multidrug resistance phenotypes. Here we report that endonuclease-prepared small interfering RNA (esiRNA) at concentrations as low as 10 ng/ml(More)