WeiGuo Zhang

Learn More
—In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any m, one can construct infinitely many n-variable (n even),(More)
Recently, a class of cryptographic Boolean functions called generalized Maiorana–McFarland (GMM) functions was proposed in Zhang and Pasalic (IEEE Trans Inf Theory 60(10):6681–6695, 2014). In particular, it was demonstrated that certain subclasses within the GMM class satisfy all the relevant cryptographic criteria including a good resistance to (fast)(More)
In this paper, we employ the so-called semi-bent functions to achieve significant improvements over currently known methods regarding the number of orthogonal sequences per cell that can be assigned to a regular tessellation of hexagonal cells, typical for certain code-division multiple-access (CDMA) systems. Our initial design method generates a large(More)
Boolean functions with high nonlinearity, high resiliency and strict avalanche criterion (SAC) play an important role in the designs of conventional cryptographic systems. In this paper, a method is proposed to construct resilient Boolean functions on n variables (n even) satisfying SAC with nonlinearity > 2 n−1 − 2 n/2. A large class of cryptographic(More)
In a recent paper [1], Zhang and Xiao describe a technique on constructing almost optimal resilient functions on even number of variables. In this paper, we will present an extensive study of the constructions of almost optimal resilient functions by using the generalized Maiorana-McFarland (GMM) construction technique. It is shown that for any given m, it(More)
  • 1