Learn More
Potassium channels have a very wide distribution of single-channel conductance, with BK type Ca(2+)-activated K(+) channels having by far the largest. Even though crystallographic views of K(+) channel pores have become available, the structural basis underlying BK channels' large conductance has not been completely understood. In this study we use(More)
Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K(+) channels have suggested that their activation gates may be located near or within(More)
Activation of spinal astrocytes may contribute to neuropathic pain. Adjacent astrocytes can make direct communication through gap junctions formed by connexin 43 (Cx43) in the central nervous system. Yet, the role of spinal astroglial gap junctions in neuropathic pain is not fully understood. Since Cx43 is the connexin isoform expressed preferentially in(More)
Recent studies reported the translocator protein (TSPO) to play critical roles in several kinds of neurological diseases including the inflammatory and neuropathic pain. However, the precise mechanism remains unclear. This study was undertaken to explore the distribution and possible mechanism of spinal TSPO against chronic neuropathic pain (CNP) in a rat(More)
BACKGROUND AND OBJECTIVE Clinical studies have revealed that patients with chronic pain are more likely to have anxiety and depression, which are often associated with cognitive dysfunction. However, whether neuropathic pain can induce cognition dysfunction remains uncertain. Antidepressants and nonsteroidal anti-inflammatory drugs can treat neuropathic(More)
Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and(More)
Neuropathic pain is a complex syndrome resulting from damage to the peripheral nervous system. Central neuroimmune activation contributes to the generation and maintenance of chronic pain after nerve injury. The current study determined the effects of recombinant human erythropoietin (rhEPO) on behavioral hyperalgesia and neuroimmune activation in a rat(More)
Molecular diversity of ion channel structure and function underlies variability in electrical signaling in nerve, muscle , and non-excitable cells. Protein phosphorylation and alternative splicing of pre-mRNA are two important mechanisms to generate structural and functional diversity of ion channels. However, systematic mass spectrometric analyses of in(More)
SK channels underlie important physiological functions by linking calcium signaling with neuronal excitability. Potassium currents through SK channels demonstrate inward rectification, which further reduces their small outward conductance. Although it has been generally attributed to block of outward current by intracellular divalent ions, we find that(More)
Although progesterone was reported to be a neuroprotective agent against injuries to the nervous system, including the peripheral neuropathy, the mechanisms of its dose or timing-related effects remain unclear. Translocator protein (TSPO) is predominantly located in the mitochondrial outer membrane and has been recently implicated in modulation of several(More)