Learn More
Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160(More)
Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6%∼96.7% of the AtDt genome, are anchored and(More)
Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using(More)
Hydration forces are thought to result from the energetic cost of water rearrangement near macromolecular surfaces. Raman spectra, collected on the same collagen samples on which these forces were measured, reveal a continuous change in water hydrogen-bonding structure as a function of separation between collagen triple helices. The varying spectral(More)
Single-nucleotide polymorphisms, as well as small insertions and deletions (here referred to collectively as simple nucleotide polymorphisms, or SNPs), comprise the largest set of sequence variants in most organisms. Positional cloning based on SNPs may accelerate the identification of human disease traits and a range of biologically informative mutations.(More)
We have demonstrated that the common soil bacterium, Bacillus subtilis, reduces selenite to an insoluble and much less toxic product--the red form of elemental selenium. Reduction was effected by an inducible system that appears to deposit elemental selenium between the cell wall and the plasma membrane. Glucose and sucrose supported selenite reduction.(More)
Molecular docking and three-dimensional quantitative structure-activity relationships (3D-QSAR) were used to develop models to predict binding affinity of polybrominated diphenyl ether (PBDE) compounds to the human transthyretin (TTR). Based on the molecular conformations derived from the molecular docking, predictive comparative molecular similarity(More)
Cotton is an economically important crop that provides both natural fiber and by-products such as oil and protein. Its global gene expression could provide insight into the biological processes underlying growth and development, which involve suites of genes expressed with temporal and spatial control by regulatory networks. Generally, the goal for cotton(More)
Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model(More)
Some polybrominated diphenyl ethers (PBDEs) may have endocrine-disrupting (ED) potencies. In this study, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) were performed to explore the possible anti-androgenicity of PBDEs. Based on the alignment generated by docking conformations, a highly predictive comparative(More)