Wei-Yin Chiang

Learn More
We formulate and analyze oscillatory dynamics associated with a model of dynamically active, but spatially segregated, compartments that are coupled through a chemical signal that diffuses in the bulk medium between the compartments. The coupling between each compartment and the bulk is due to both feedback terms to the compartmental dynamics and flux(More)
The suprachiasmatic nucleus (SCN) of the hypothalamus, the master mammalian circadian pacemaker, synchronizes endogenous rhythms with the external day-night cycle. Older humans, particularly those with Alzheimer disease (AD), often have difficulty maintaining normal circadian rhythms compared to younger adults, but the basis of this change is unknown. We(More)
Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in(More)
One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the(More)
Motor activity in humans and other animals possesses fractal temporal fluctuations that co-exists with circadian or daily activity rhythms. The perturbations in fractal activity patterns are often accompanied by altered circadian/daily rhythms. The goal of this study is to test whether fractal regulation in motor activity provides physiological information(More)
The role of specific cortical regions in sleep-regulating circuits is unclear. The anterior insula (AI) has strong reciprocal connectivity with wake and sleep-promoting hypothalamic and brainstem regions, and we hypothesized that the AI regulates patterns of sleep and wakefulness. To test this hypothesis, we lesioned the AI in rats (n = 8) and compared(More)
We study the dynamical and structural properties of spiral waves propagating on excitable media consisting of a network made of phase-coupled Kuramoto elements. Each element in the network has an intrinsic oscillation frequency and a threshold of excitability. We numerically study the effects of the excitability and coupling strength on the structure and(More)
Self-organization in the cell relies on the rapid and specific binding of molecules to their cognate targets. Correct bindings must be stable enough to promote the desired function even in the crowded and fluctuating cellular environment. In systems with many nearly matched targets, rapid and stringent formation of stable products is challenging. Mechanisms(More)
Oscillatory dynamics of coupled excitable FitzHugh-Nagumo elements in the presence of noise is investigated as a function of the coupling strength g. For two such coupled elements, their frequencies are enhanced and will synchronize at a frequency higher than the uncoupled frequencies of each element. As g increases, there is an unexpected peak in the(More)
  • 1