Wei-Yen Wang

Learn More
In this paper, an observer-based adaptive fuzzy-neural controller for a class of unknown nonlinear dynamical systems is developed. The observer-based output feedback control law and update law to tune on-line the weighting factors of the adaptive fuzzy-neural controller are derived. The total states of the nonlinear system are not assumed to be available(More)
In this paper, an adaptive fuzzy controller for strict-feedback canonical nonlinear systems is proposed. The completely unknown nonlinearities and disturbances of the systems are considered. Since fuzzy logic systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory is employed to derive the(More)
The paper describes a novel application of the B-spline membership functions (BMF's) and the fuzzy neural network to the function approximation with outliers in training data. According to the robust objective function, we use gradient descent method to derive the new learning rules of the weighting values and BMF's of the fuzzy neural network for robust(More)
A novel adaptive fuzzy-neural sliding-mode controller with H(infinity) tracking performance for uncertain nonlinear systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbances and approximate errors. Because of the advantages of fuzzy-neural systems, which can uniformly approximate nonlinear continuous functions to arbitrary(More)
In this paper, a direct adaptive fuzzy-neural output-feedback controller (DAFOC) for a class of uncertain nonlinear systems is developed under the constraint that only the system output is available for measurement. An output feedback control law and an update law are derived for on-line tuning the weighting factors of the DAFOC. By using strictly(More)
In this paper, we investigate a novel robust control approach for a class of uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones. Sliding mode control (SMC) is suggested to design stabilizing controllers for these uncertain nonlinear systems. The controllers guarantee the global reaching condition of the sliding(More)
Binding sites for cellular transcription factors were placed near the simian virus 40 origin of replication, and their effect on replication and TATA-dependent transcription was measured in COS cells. The hierarchy of transcriptional stimulation changed when the plasmids replicated. Only one of seven inserted sequences, a moderately weak transcription(More)
In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Because of the capability of genetic algorithms (GAs) in directed(More)