Wei-Yang Bao

Learn More
The effects of bacterial biofilms (BFs) on larval settlement and metamorphosis of the mussel, Mytilus coruscus, were investigated in the laboratory. Of nine different isolates, Shewanella sp.1 BF induced the highest percentage of larval settlement and metamorphosis, whereas seven other isolates had a moderate inducing activity and one isolate,(More)
This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial(More)
The metamorphic response of pediveliger larvae of Mytilus galloprovincialis to the neurotransmitter blockers chlorpromazine, amitriptyline, rauwolscine, idazoxan, atenolol and butoxamine, and to tetraethylammonium chloride (TEA) was investigated through a series of bioassays. Chlorpromazine, amitriptyline and idazoxin inhibited larval metamorphosis induced(More)
Pediveliger larvae of Mytilus galloprovincialis were subjected to a series of bioassays to investigate the induction of metamorphosis using neuroactive compounds, K(+), NH(4)(+) and organic solvents. Growth and survival of post-larvae obtained using ethanol and methanol were also observed. Epinephrine, phenylephrine, clonidine and metanephrine induced(More)
Settlement and metamorphosis of pediveliger larvae of Mytilus coruscus in response to natural biofilms was investigated in the laboratory. Pediveliger larvae settled and metamorphosed in response to biofilms and post-larval settlement and metamorphosis increased with biofilm age. The activity of the biofilm was positively correlated with biofilm age, dry(More)
Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the(More)
Copper (Cu) contamination is a potential threat to the marine environment due to the use of Cu-based antifouling paints. Cu stress on larval settlement of the polychaete Hydroides elegans was investigated, and this was linked to Cu stress on biofilms and on the biofilm development process. The inductiveness of young biofilms was more easily altered by Cu(More)
  • 1