Wei Wang

Learn More
Supervised metric learning plays a substantial role in statistical classification. Conventional metric learning algorithms have limited utility when the training data and testing data are drawn from related but different domains (i.e., source domain and target domain). Although this issue has got some progress in feature-based transfer learning, most of the(More)
Learning an appropriate feature representation across source and target domains is one of the most effective solutions to domain adaptation problems. Conventional cross-domain feature learning methods rely on the Reproducing Kernel Hilbert Space (RKHS) induced by a single kernel. Recently, Multiple Kernel Learning (MKL), which bases classifiers on(More)