Wei Wang

Learn More
This paper presents an algorithm using discriminative sparse representations to segment tissues in optical images of the uterine cervix. Because of the large variations in the image appearance caused by the changing of illumination and specular reflection, the different classes of color and texture features in optical images are often overlapped with each(More)
Comparison of a group of multiple observer segmentations is known to be a challenging problem. A good segmentation evaluation method would allow different segmentations not only to be compared, but to be combined to generate a "true" segmentation with higher consensus. Numerous multi-observer segmentation evaluation approaches have been proposed in the(More)
We empirically evaluate a distance-guided learning method embedded in a multiple classifier system (MCS) for tissue segmentation in optical images of the uterine cervix. Instead of combining multiple base classifiers as in traditional ensemble methods, we propose a Bhattacharyya distance based metric for measuring the similarity in decision boundary shapes(More)
In this paper, we introduce a new classifier ensemble approach , applied to tissue segmentation in optical images of the uterine cervix. Ensemble methods combine the predictions of a set of diverse classifiers. The main contribution of our approach is an effective way of combination based on each classifier's performance level—namely, the sensitivity and(More)
We proposed an approach based on reconstructive sparse representations to segment tissues in optical images of the uterine cervix. Because of large variations in image appearance caused by the changing of the illumination and specular reflection, the color and texture features in optical images often overlap with each other and are not linearly separable.(More)
  • 1