Learn More
BACKGROUND Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could(More)
Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density(More)
This study examines motor cortical representation of hand position and its relationship to the representation of hand velocity during reaching movements. In all, 978 motor cortical neurons were recorded from the proximal arm area of rostral motor cortex. The results demonstrate that position and velocity are simultaneously encoded by single motor cortical(More)
In this paper, intracortical local field potentials (LFPs) and single units were recorded from the motor cortices of monkeys (Macaca fascicularis) while they preformed a standard three-dimensional (3-D) center-out reaching task. During the center-out task, the subjects held their hands at the location of a central target and then reached to one of eight(More)
Spinal cord injury (SCI) often affects a person's ability to perform critical activities of daily living and can negatively affect his or her quality of life. Assistive technology aims to bridge this gap in order to augment function and increase independence. It is critical to involve consumers in the design and evaluation process as new technologies such(More)
The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT) was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It(More)
This article reviews neural interface technology and its relationship with neuroplasticity. Two types of neural interface technology are reviewed, highlighting specific technologies that the authors directly work with: (1) neural interface technology for neural recording, such as the micro-ECoG BCI system for hand prosthesis control, and the comprehensive(More)
This paper demonstrates a synergy-based brain-machine interface that uses low-dimensional command signals to control a high dimensional virtual hand. First, temporal postural synergies were extracted from the angular velocities of finger joints of five healthy subjects when they performed hand movements that were similar to activities of daily living. Two(More)
The reduction of artifacts in neural data is a key element in improving analysis of brain recordings and the development of effective brain-computer interfaces. This complex problem becomes even more difficult as the number of channels in the neural recording is increased. Here, new techniques based on wavelet thresholding and independent component analysis(More)
Magnetoencephalography (MEG) enables a noninvasive interface with the brain that is potentially capable of providing movement-related information similar to that obtained using more invasive neural recording techniques. Previous studies have shown that movement direction can be decoded from multichannel MEG signals recorded in humans performing wrist(More)