Learn More
1 The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative(More)
In molecular mechanics (MM) studies, atom types and/or bond types of molecules are needed to determine prior to energy calculations. We present here an automatic algorithm of perceiving atom types that are defined in a description table, and an automatic algorithm of assigning bond types just based on atomic connectivity. The algorithms have been(More)
Tamoxifen significantly reduces tumor recurrence in certain patients with early-stage estrogen receptor-positive breast cancer, but markers predictive of treatment failure have not been identified. Here, we generated gene expression profiles of hormone receptor-positive primary breast cancers in a set of 60 patients treated with adjuvant tamoxifen(More)
Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant(More)
A rapid increase in the number of experimentally derived three-dimensional structures provides an opportunity to better understand and subsequently predict protein-protein interactions. In this study, structurally conserved residues were derived from multiple structure alignments of the individual components of known complexes and the assigned conservation(More)
Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and(More)
BACKGROUND The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. METHODOLOGY/PRINCIPAL FINDINGS A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study(More)
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological(More)
The SH3 domain of the human protein amphiphysin-1, which plays important roles in clathrin-mediated endocytosis, actin function and signaling transduction, can recognize peptide motif PXRPXR (X is any amino acid) with high affinity and specificity. We have constructed a complex structure of the amphiphysin-1 SH3 domain and a high-affinity peptide ligand(More)
OBJECTIVE Five genomewide association studies (GWAS) in white populations have recently identified and confirmed 9 novel Alzheimer's disease (AD) susceptibility loci (CLU, CR1, PICALM, BIN1, ABCA7, MS4A gene cluster, CD2AP, CD33, and EPHA1). These studies have been conducted almost exclusively in white populations and it is unclear whether these(More)