Learn More
NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions,(More)
The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of(More)
The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of(More)
<i>Map-matching</i> is the process of aligning a sequence of observed user positions with the road network on a digital map. It is a fundamental pre-processing step for many applications, such as moving object management, traffic flow analysis, and driving directions. In practice there exists huge amount of low-sampling-rate (e.g., one point every 2--5(More)
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality(More)
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference – sometimes prohibitively so in the case of(More)
In this paper, we propose a new computational model for visual saliency derived from the information maximization principle. The model is inspired by a few well acknowledged biological facts. To compute the saliency spots of an image, the model first extracts a number of sub-band feature maps using learned sparse codes. It adopts a fully-connected graph(More)