Wei-Tien Tai

Learn More
Hepatocellular carcinoma (HCC) is one of the most common potentially lethal human malignancies worldwide. Sorafenib, a tyrosine kinase inhibitor, was recently approved by the United States Food and Drug Administration for HCC. In this study, we established two sorafenib-resistant HCC cell lines from Huh7, a human HCC cell line, by long-term exposure of(More)
BACKGROUND & AIMS Recently, we reported that sorafenib sensitizes hepatocellular carcinoma (HCC) cells to TRAIL through the inhibition of signal transducer and activator of transcription 3 (STAT3). Here, we report that sorafenib inhibits HCC via a kinase-independent mechanism: SHP-1 dependent STAT3 inactivation. METHODS SC-1 is a sorafenib derivative that(More)
PURPOSE Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, many hepatocellular carcinoma (HCC) cells show resistance to TRAIL-induced apoptosis. Here, we report that sorafenib improves the antitumor effect of TRAIL-related agents in resistant HCC. EXPERIMENTAL DESIGN HCC cell lines (PLC5,(More)
Regulatory factor X-1 (RFX-1) is a transcription factor that has been linked to negative regulation of tumor progression; however, its biological function and signaling cascades are unknown. Here, we performed several studies to elucidate the roles of RFX-1 in the regulation of SHP-1 in hepatocellular carcinoma (HCC) cells. Overexpression of RFX-1 resulted(More)
Hepatocellular carcinoma is one of the most common cancers worldwide, and a leading cause of cancer-related death. Owing to unsatisfactory clinical outcomes under the current standard of care, there is a need to search for and identify novel and potent therapeutic targets to improve patient outcomes. Sorafenib is the first and only approved targeted therapy(More)
In this study, we investigated the effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma (HCC). LCL161 showed differential effects on apoptosis in four HCC cell lines, and the endogenous level of Bcl-2 determined the sensitivity of HCC cells to LCL161. Cytotoxicity and apoptosis were observed in sensitive PLC5 and Hep3B cells that express lower(More)
STAT3 is a transcription factor that modulates survival-directed transcription. It is persistently activated in many human cancers. Literature has shown that sorafenib, Raf kinase inhibitor, reduces Phospho-STAT3 and induces cell death. A series of sorafenib derivatives were synthesized as new inhibitors for STAT3. Urea, sulfonamide, and carboxamide linkers(More)
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third-leading cause of cancer death worldwide. Nilotinib is an orally available receptor tyrosine kinase inhibitor approved for chronic myelogenous leukemia. This study investigated the effect of nilotinib on HCC. Nilotinib did not induce cellular apoptosis. Instead, staining with(More)
We investigated the effects of a novel compound, SC-2001, on hepatocellular carcinoma (HCC). SC-2001, which is structurally related to the Mcl-1 inhibitor obatoclax, showed better antitumor effects than obatoclax in HCC cell lines, including HepG2, PLC5 and Huh-7. Like obatoclax, SC-2001 inhibited the protein-protein interactions between Mcl-1 and Bak.(More)