Learn More
High-efficiency light-driven hydrogen evolution from water was demonstrated by using poly(phenyleneethynylene) bearing negatively charged, [G3] poly(benzyl ether) dendrimeric side groups 3(L4) as photosensitizer. Three-dimensional wrapping of the conjugated backbone suppressed self-quenching of the photoexcited state, while methyl viologen (MV(2+)), a(More)
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other(More)
Dendritic molecules appended with multiple zinc porphyrin units (DPm, m [number of zinc porphyrin units] = 6, 12, and 24) trap bipyridine compounds carrying multiple fullerene units (Py2Fn, n [number of C60 units] = 1-3), affording coordination complexes DPm superset Py2Fn having a photoactive layer consisting of spatially segregated donor and acceptor(More)
Zinc porphyrin-appended dendrimers, 12PZn, 18PZn, 24PZn, and 36PZn, containing 12, 18, 24, and 36 zinc porphyrin units, respectively, were synthesized using zinc porphyrin dyad (2PZn) and triad (3PZn) as precursors. Although these dye-functionalized dendrimers all serve as chiroptical sensors for an asymmetric bipyridine (RR- and SS-Py2), the sensing(More)
We have prepared supramolecular assemblies of hexaaryl-anchored polyester zinc(II) porphyrin dendrimers (6P(Zn)W, 12P(Zn)W, and 24P(Zn)W) with various bipyridyl guests (C(n)Py2; n = 1, 2, 4, 6, and 8) through self-assembled coordination to control the structures and photophysical properties. We comparatively investigated the photophysical properties of(More)
Multiporphyrin dendrimers are among the most promising architectures to mimic the oxygenic light-harvesting complex because of their structural similarities and synthetic convenience. The overall geometries of dendrimers are determined by the core structure, the type of dendron, and the number of generations of interior repeating units. The rigid core and(More)
A new class of organic photovoltaic materials, poly(rod-coil) polymers composed of alternatively definite conjugated and non-conjugated segments, have been proposed. The first five examples based on polyurethane chemistry showed photovoltaic performance surpassing the reference compound, but less dependent on their molecular weight.
A p/n heterojunction is the basic setup for light-electric conversion. It has been widely accepted that the ideal configuration for organic photovoltaics is formed by the joint of a pair of long-range continuous but nanometre-wide phases consisting of electron-donating (D) and -accepting (A) components, respectively. Such a p/n heterojunction can provide(More)