Learn More
Currently, most research on nonnegative matrix factorization (NMF)focus on 2-factor $X=FG^T$ factorization. We provide a systematicanalysis of 3-factor $X=FSG^T$ NMF. While it unconstrained 3-factor NMF is equivalent to it unconstrained 2-factor NMF, itconstrained 3-factor NMF brings new features to it constrained 2-factor NMF. We study the orthogonality(More)
Non-negative Matrix Factorization (NMF) and Probabilistic Latent Semantic Indexing (PLSI) have been successfully applied to document clustering recently. In this paper, we show that PLSI and NMF optimize the same objective function, although PLSI and NMF are different algorithms as verified by experiments. This provides a theoretical basis for a new hybrid(More)
Personality is an essential feature for creating socially interactive robots. Studies on this dimension will facilitate enhanced human–robot interaction (HRI). Using AIBO, a social robotic pet developed by Sony, we examined the issue of personality in HRI. In this gender-balanced 2 (AIBO personality: introvert vs. extrovert) by 2 (participant personality:(More)
Cognitive and psychological predictors of the negative outcomes associated with playing MMOGs (massively multiplayer online games) a b s t r a c t This study integrates research on problematic Internet use to explore the cognitive and psychological predictors of negative consequences associated with playing massively multiplayer online games (MMOGs).(More)
Visual clutter denotes a disordered collection of graphical entities in information visualization. Clutter can obscure the structure present in the data. Even in a small dataset, clutter can make it hard for the viewer to find patterns, relationships and structure. In this paper, we define visual clutter as any aspect of the visualization that interferes(More)
Large number of dimensions not only cause clutter in multi-dimensional visualizations, but also make it difficult for users to navigate the data space. Effective dimension management, such as dimension ordering, spacing and filtering, is critical for visual exploration of such datasets. Dimension ordering and spacing explicitly reveal dimension(More)
Non-negative Matrix Factorization (NMF) and Probabilistic Latent Semantic Indexing (PLSI) have been successfully applied to document clustering recently. In this paper, we show that PLSI and NMF (with the I-divergence objective function) optimize the same objective function, although PLSI and NMF are different algorithms as verified by experiments. This(More)