Learn More
OBJECTIVE To determine the sensitivity of T2*-weighted gradient-echo (T2*GRE) and inversion recovery turbo-field-echo (TFE) sequences for cortical multiple sclerosis lesions at 7 T. DESIGN, SETTING, AND PARTICIPANTS Autopsied brain tissue from individuals with multiple sclerosis was scanned with 3-dimensional T2*GRE and 3-dimensional inversion recovery(More)
Activation of terminal caspases such as caspase-3 plays an important role in the execution of neuronal cell death after transient cerebral ischemia. Although the precise mechanism by which terminal caspases are activated in ischemic neurons remains elusive, recent studies have postulated that the mitochondrial cell death-signaling pathway may participate in(More)
Using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL), we investigated the evolution of DNA strand breaks, a marker of DNA damage, in rat brain after 1 h of middle cerebral artery occlusion and various durations of reperfusion. DNA single-strand breaks(More)
MRI phase imaging in multiple sclerosis (MS) patients and in autopsy tissue have demonstrated the presence of iron depositions in white matter lesions. The accumulation of iron in some but not all lesions suggests a specific, potentially disease-relevant process, however; its pathophysiological significance remains unknown. Here, we explore the role of(More)
We have investigated the role of the BH3-only pro-death Bcl-2 family protein, Bid, in ischemic neuronal death in a murine focal cerebral ischemia model. Wild-type and bid-deficient mice of inbred C57BL/6 background were subjected to 90-min ischemia induced by left middle cerebral artery occlusion followed by 72-h reperfusion. The volume of ischemic infarct(More)
Nuclear changes, including internucleosomal DNA fragmentation, are characteristic features of neuronal apoptosis resulting from transient cerebral ischemia and related brain insults for which the molecular mechanism has not been elucidated. Recent studies suggest that a caspase-3-mediated mechanism may be involved in the process of nuclear degradation in(More)
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using(More)
Bcl-xL is a well characterized death-suppressing molecule of the Bcl-2 family. Bcl-xL is expressed in embryonic and adult neurons of the CNS and may play a critical role in preventing neuronal apoptosis that occurs during brain development or results from diverse pathologic stimuli, including cerebral ischemia. In this study, we used a novel approach to(More)
Loss of mitochondrial membrane integrity and the resulting release of apoptogenic factors may play a critical role in mediating hippocampal neurodegeneration after transient global ischemia. In the present study, the authors have cloned and characterized the rat cDNA encoding apoptosis-inducing factor (AIF), an intramitochondrial protein that promotes cell(More)
Endogenous oxidative damage to brain mitochondrial DNA and mitochondrial dysfunction are contributing factors in aging and in the pathogenesis of a number of neurodegenerative diseases. In this study, we characterized the regulation of base-excision-repair (BER) activity, the predominant repair mechanism for oxidative DNA lesions, in brain mitochondria as(More)