Wei-Na Jin

Learn More
OBJECTIVE To determine the effect of a lower dose of rituximab in depleting B lymphocytes, maintaining low B-cell counts, and relapse in patients with neuromyelitis optica (NMO) and NMO spectrum disorders. METHODS We treated 5 Chinese patients with deteriorating NMO and NMO spectrum disorders with a 100-mg IV infusion of rituximab once a week for 3(More)
AIMS To investigate the clinical characteristics and sera anti-aquaporin 4 (AQP4) antibody positivity in patients with inflammatory demyelinating disorders (IDDs) of the central nervous system (CNS) in Tianjin, China. METHODS We retrospectively evaluated 234 patients with IDDs including neuromyelitis optica (NMO), recurrent optic neuritis (rON),(More)
Recovery from organ-specific autoimmune diseases largely relies on the mobilization of endogenous repair mechanisms and local factors that control them. Natural killer (NK) cells are swiftly mobilized to organs targeted by autoimmunity and typically undergo numerical contraction when inflammation wanes. We report the unexpected finding that NK cells are(More)
To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we tracked an established phenotype of circulating NK cells at several time points in patients with different grades of TBI. In serial peripheral blood samples, NK cells were prospectively measured by flow cytometry of CD3− CD56+ lymphocytes. Compared to(More)
Brain ischemia elicits microglial activation and microglia survival depend on signaling through colony-stimulating factor 1 receptor (CSF1R). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain.(More)
Recent studies have demonstrated that lymphocytes play a key role in ischemic brain injury. However, there is still a lack of viable approaches to non-invasively track infiltrating lymphocytes and reveal their key spatiotemporal events in the inflamed central nervous system (CNS). Here we describe an in vivo imaging approach for sequential monitoring of(More)
Macrophage migration inhibitory factor (MIF) is a key cytokine/chemokine in the activation and recruitment of inflammatory T lymphocytes known to exacerbate experimental stroke severity. MIF effects are mediated through its primary cellular receptor, CD74, the MHC class II invariant chain present on all class II expressing cells, including monocytes,(More)
  • 1