Learn More
MOTIVATION Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which(More)
Translational selection, including gene expression, protein abundance, and codon usage bias, has been suggested as the single dominant determinant of protein evolutionary rate in yeast. Here, we show that protein structure is also an important determinant. Buried residues, which are responsible for maintaining protein structure or are located on a stable(More)
UNLABELLED The structural, functional, and mechanistic characterization of several types of post-translational modifications (PTMs) is well-documented. PTMs, however, may interact or interfere with one another when regulating protein function. Yet, characterization of the structural and functional signatures of their crosstalk has been hindered by the(More)
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder-to-order transitions. In one-to-many binding, a single MoRF binds to two or more different partners individually. MoRF-based one-to-many protein-protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs(More)
Blind watermarking method is proposed to evaluate data embedding techniques for H.264 video signals with robustness against various signal processing functions. H.264 is a new advanced standard. The applications of video on Internet or wireless networks become very popular nowadays. However, these digital contents can be easily modified and copied by end(More)
Disorder prediction for short peptides is important and difficult. All modern predictors have to be optimized on a preselected dataset prior to prediction. In the succeeding prediction process, the predictor works on a query sequence or its short segment. For implementing the prediction smoothly and obtaining sound prediction results, a specific length of(More)
Intrinsically disordered proteins often bind to more than one partner. In this study, we focused on 11 sets of complexes in which the same disordered segment becomes bound to two or more distinct partners. For this collection of protein complexes, two or more partners of each disordered segment were selected to have less than 25% amino acid identity at(More)
Intrinsically disordered proteins (IDPs) are associated with a wide range of functions. We suggest that sequence-based subtypes, which we call flavors, may provide the basis for different biological functions. The problem is to find a method that separates IDPs into different flavor / function groups. Here we discuss one approach, the (Charge-Hydropathy)(More)
Recently, we have developed a method (Shih et al., Proteins: Structure, Function, and Bioinformatics 2007;68: 34-38) to compute correlation of fluctuations of proteins. This method, referred to as the protein fixed-point (PFP) model, is based on the positional vectors of atoms issuing from the fixed point, which is the point of the least fluctuations in(More)
The significant work that has been invested toward understanding protein-protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work,(More)