Learn More
AIM Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to(More)
Human mesenchymal stem cells (hMSC) are a population of multipotent cells that can differentiate into osteoblasts, chondrocytes, adipocytes, and other cells. The exact mechanism governing the differentiation of hMSC into osteoblasts remains largely unknown. Here, we analyzed protein expression profiles of undifferentiated as well as osteogenic induced hMSC(More)
In this study, we explored the competence of adipose-derived stem cells to differentiate into Schwann cells in vitro. Rat adipose-derived stem cells were sequentially treated with various factors beta-mercaptoethanol, all-trans-retinoic acid, followed by a mixture of forskolin, basic fibroblast growth factor, platelet-derived growth factor and heregulin. We(More)
Embryonic stem cells can proliferate indefinitely and are capable of differentiating into derivatives of all three embryonic germ layers in vitro, including the neural lineage. The main objective of this study is to test the effects of neural stem cell conditioned medium on the neural differentiation of mouse embryonic stem cells. When cultured in neural(More)
Mesenchymal stem cells (MSCs) are the common progenitors of osteoblasts and adipocytes. A reciprocal relationship exists between osteogenesis and adipogenesis in the bone marrow, and the identification of signaling pathways that stimulate MSC osteogenesis at the expense of adipogenesis is of great importance from the viewpoint of developing new therapeutic(More)
The progressive restriction of cell fate during lineage differentiation is a poorly understood phenomenon despite its ubiquity in multicellular organisms. We recently used a cell fusion assay to define a mode of epigenetic silencing that we termed "occlusion", wherein affected genes are silenced by cis-acting chromatin mechanisms irrespective of whether(More)
A gene's transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate(More)
Neural stem cells are multipotent and self-renewing cells with important potential application in cell replacement therapy in brain damage. Many studies have shown that nestin-positive cells represent neural stem and progenitor cells in the central neural system. Here, we derived neural stem cells from the subventricular zone of a newborn(More)
Bone marrow-derived mesenchymal stem cells (MSCs) possess a multi-lineage differentiation potential and have the ability to repair and rebuild injured vessels. The autologous differentiated MSC transplantation also makes possible the tissue-engineered grafts. Therefore, the efficient endothelial differentiation of MSCs could be beneficial in the successful(More)
Techniques for small molecule screening are widely used in biological mechanism study and drug discovery. Here, we reported a novel adipocyte differentiation assay for small molecule selection, based on human mesenchymal stem cells (hMSCs) transduced with fluorescence reporter gene driven by adipogenic specific promoter--adipocyte Protein 2 (aP2; also(More)