Learn More
The lifetime of Er3+ in silicon-rich silicon oxide has been reported with quite widely varying values ranging from 9 ms to 2 ms. In this work, we consider the direct impact of silicon nanoclusters on the erbium radiative lifetime, and show that it is a function of the silicon nanocluster size, and also the erbium proximity to the nanocluster.
We demonstrate stable single-frequency and polarization operation of a traveling-wave, Er(3+)-doped fiber loop laser by incorporating an unpumped Er(+3)-doped fiber section butted against a narrow-band feedback reflector. The saturable absorber acts as a narrow bandpass filter that automatically tracks the lasing wavelength, thus ensuring single-frequency(More)
We review our recent progress in the development of lead silicate glass fibers with high nonlinearity and tailored near-zero dispersion at telecommunication wavelengths, encompassing holey, all-solid microstructured and W-type fiber designs. The fabrication techniques and relative merits of each fiber design are described in detail. The optical properties(More)
We experimentally demonstrate phase regeneration of a 40-Gb/s differential phase shift keying (DPSK) signal in a 1.7-m long highly nonlinear lead silicate W-type fiber using a degenerate two-pump phase-sensitive amplifier (PSA). Results show an improvement in the Error Vector Magnitude (EVM) and a reduction of almost a factor of 2 in the phase noise of the(More)
We present experimental results of complex grating structures fabricated with uniform phase masks by the moving fiber-scanning beam approach. Pure apodized gratings with side-mode-suppression levels in excess of 40 dB, self-apodized linearly chirped gratings, and phase shifted gratings with narrow-band transmission peaks have all been realized.
The delayed self-heterodyne interferometric technique, first proposed in the context of semiconductor lasers, has been commonly used for over 20 years in the determination of the optical linewidth of lasers. We examine this technique in the light of recent work on fiber lasers, and point out further constraints in the applicability of these measurements. An(More)
We report the fabrication of a large mode area tellurite holey fiber from an extruded preform, with a mode area of 3000microm(2). Robust single-mode guidance at 1.55microm was confirmed by both optical measurement and numerical simulation. The propagation loss was measured as 2.9dB/m at 1.55microm. A broad and flat supercontinuum from 0.9 to 2.5microm with(More)
Boron- and germanium-doped highly photosensitive cladding is used in a novel design to achieve photosensitive Er/Yb-doped fibers, permitting short, strong gratings (length approximately 1 cm, reflectivity >99%) to be written without hydrogenation. The high absorption at 980 nm in Er/Yb fibers permits efficient pump absorption over a short device length,(More)