Learn More
The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the(More)
The integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory, but its specific function in these processes has remained elusive. In this article, we summarize recent progress in this area, including advances based on behavioural studies and insights(More)
The piwi family genes are crucial for stem cell self-renewal, RNA silencing, and translational regulation in diverse organisms. However, their function in mammals remains unexplored. Here we report the cloning of a murine piwi gene (miwi) essential for spermatogenesis. miwi encodes a cytoplasmic protein specifically expressed in spermatocytes and(More)
The formulation min x,y f(x) + g(y), subject to Ax+By = b, where f and g are extended-value convex functions, arises in many application areas such as signal processing, imaging and image processing, statistics, and machine learning either naturally or after variable splitting. In many common problems, one of the two objective functions is strictly convex(More)
Adult-born dentate granule cells (DGCs) contribute to learning and memory, yet it remains unknown when adult-born DGCs become involved in the cognitive processes. During neurogenesis, immature DGCs display distinctive physiological characteristics while undergoing morphological maturation before final integration into the neural circuits. The survival and(More)
The piwi family genes, which are defined by conserved PAZ and Piwi domains, play important roles in stem cell self-renewal, RNA silencing, and translational regulation in various organisms. To reveal the function of the mammalian homolog of piwi, we produced and analyzed mice with targeted mutations in the Mili gene, which is one of three mouse homologs of(More)
Recently, investigation of new neurons in memory formation has focused on a specific function-pattern separation. However, it has been difficult to reconcile the form of separation tested in behavioral tasks with how it is conceptualized according to computational and electrophysiology perspectives. Here, we propose a memory resolution hypothesis that(More)
Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural(More)
The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus(More)
This paper introduces a parallel and distributed extension to the alternating direction method of multipliers (ADMM) for solving convex problem: minimize f1(x1) + ∙ ∙ ∙ + fN (xN ) subject to A1x1 + ∙ ∙ ∙ + ANxN = c, x1 ∈ X1, . . . , xN ∈ XN . The algorithm decomposes the original problem into N smaller subproblems and solves them in parallel at each(More)