Wei Cong

Learn More
—We demonstrate an error-free four-user 10-Gb/s/user optical code-division multiple-access network testbed employing the spectral phase encoded time spreading technique and nonlinear thresholding. The experiments successfully overcome multiuser interference , resulting in error-free operation.
—We successfully demonstrate a spectral phase-encoded time-spreading (SPECTS) optical code-division multiple-access (O-CDMA) field trial on an 80.8-km link within the Boston-South Network (BOSSNET) using a fully-integrated, polarization-independent arrayed-waveguide grating (AWG)-based encoder/decoder. The subpicosecond pulse source is based on an(More)
In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing ( 1 norm) regularization term with a quadratic error term in the IVTCG-based(More)
—This paper discusses design, simulation, and experimental investigations of optical-code-division multiple-access (O-CDMA) networking using a spectral phase-encoded time spreading (SPECTS) method. O-CDMA technologies can potentially provide flexible access of optical bandwidths in excess of 1 Tb/s without relying on wavelength-or(More)
—This paper demonstrates an eight-user 9 Gb/s/user time-slotted spectral phase-encoded time-spreading (SPECTS) optical code division multiple access (O-CDMA) testbed. Experimentally measured performance is compared to numerical simulations. The testbed employs a novel compact fiber-pigtailed bulk-optics setup that utilizes a single two-dimensional (2-D)(More)
—This letter presents a high-capacity optical code-division multiple-access (O-CDMA) network testbed based on the spectral phase-encoded time-spreading technique. Two 10-Gb/s/user O-CDMA network architectures (time-slotted and time-slotted polarization multiplexed) are investigated. The first O-CDMA network testbed architecture utilizes eight encoders and a(More)
We present a generalized delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to the photon flux vector. The solution of the integral equation is highly accurate to model the photon propagation in the biological tissue over a broad range of optical parameters, especially in the visible light(More)