Wei-Chiang Lin

Learn More
OBJECTIVE Adult gliomas have indistinct borders. As the ratio of neoplastic cells to normal cells becomes lower, the ability to detect these cells diminishes. We describe a device designed to augment intraoperative identification of both solid tumor and infiltrating tumor margins. METHODS A novel, intraoperative, optical spectroscopic tool, using both(More)
The short- and long-term effects of probe contact pressure on in vivo diffuse reflectance and fluorescence spectroscopy were investigated using an animal model. Elevation in probe contact pressure induced major profile alterations in the diffuse reflectance spectra between 400 and 650 nm, and led to significant intensity increases in the fluorescence(More)
OBJECT Surgery is an important therapeutic modality for pediatric patients with intractable epilepsy. However, existing imaging and diagnostic technologies such as MR imaging and electrocochleography (ECoG) do not always effectively delineate the true resection margin of an epileptic cortical lesion because of limitations in their sensitivity. Optical(More)
BACKGROUND A current limitation of hepatic radiofrequency ablation (RFA) is an inability to detect ablation margins in real time. Thermal injury from RFA alters the biochemical properties governing tissue fluorescence. We hypothesized that the changes in hepatic fluorescence measured during hepatic RFA could be used to detect irreversible hepatocyte damage(More)
OBJECTIVE Magnetic resonance imaging abnormalities in malignant brain tumors after irradiation may represent either recurrent tumor or radiation injury. Optical spectroscopy may represent a novel technique to identify radiation damage in brain tissues and to differentiate contrast-enhancing lesions from recurrent tumor. METHODS Fluorescence and diffuse(More)
This paper reports the development of a probability-based spectroscopic diagnostic algorithm capable of simultaneously discriminating tumor core and tumor margins from normal human brain tissues. The algorithm uses a nonlinear method for feature extraction based on maximum representation and discrimination feature (MRDF) and a Bayesian method for(More)
The release of excitatory amino acids (EAAs) from injured neurons has been associated with secondary injury following head trauma. The development of a rapid and sensitive method for the quantification of EAAs may provide a means for clinical management of patients affected by head trauma. We explore the potential application of surface-enhanced Raman(More)
The concept of using diffuse reflectance spectroscopy to distinguish intraoperatively between pediatric brain tumors and normal brain parenchyma at the edge of resection cavities is evaluated using an in vivo human study. Diffuse reflectance spectra are acquired from normal and tumorous brain areas of 12 pediatric patients during their tumor resection(More)
Radiofrequency ablation (RFA) is an evolving technology used to treat unresectable liver tumors. Currently, there is no accurate method to determine RFA margins in real-time during the procedure. We hypothesized that a fiber-optic based spectroscopic monitoring system could detect thermal damage from RFA in real-time. Fluorescence (F) and diffuse(More)
Resection is not a viable treatment option for the majority of liver cancer patients. Alternatives to resection include thermotherapies such as radio-frequency ablation; however, these therapies lack adequate intraoperative feedback regarding the degree and margins of tissue thermal damage. In this proof of principle study, we test the ability of(More)