• Citations Per Year
Learn More
BACKGROUND Severe hypocapnia reduces cerebral blood flow (CBF) and is known to be a risk factor for diabetic ketoacidosis (DKA)-related cerebral edema and cerebral injury in children. Reductions in CBF resulting from hypocapnia alone, however, would not be expected to cause substantial cerebral injury. We hypothesized that either hyperglycemia or ketosis(More)
BACKGROUND Type 1 diabetes may be associated with structural and functional alterations in the brain. The role of diabetic ketoacidosis (DKA) in causing these alterations has not been well explored. METHODS We used immunohistochemical staining to investigate cellular alterations in brain specimens from juvenile rats with DKA before, during, and after(More)
BACKGROUND Diabetic ketoacidosis (DKA) causes brain injuries in children ranging from subtle to life-threatening. Previous studies suggest that DKA-related brain injury may involve both stimulation of Na-K-Cl cotransport and microglial activation. Other studies implicate the Na-K-Cl cotransporter and the Ca-activated K channel KCa3.1 in activation of(More)
Diabetic ketoacidosis (DKA) frequently causes subtle brain injuries in children. Rarely, these injuries can be severe and life threatening. The physiological processes leading to brain injury during DKA are poorly understood. S100B is a calcium-binding protein secreted by astrocytes. Elevated serum S100B levels are documented in several types of brain(More)
  • 1