Wee Liang Gan

Learn More
We introduce the notion of a dioperad to describe certain operations with multiple inputs and multiple outputs. The framework of Koszul duality for operads is generalized to dioperads. We show that the Lie bialgebra dioperad is Koszul. The current interests in the understanding of various algebraic structures using operads is partly due to the theory of(More)
The theory of PBW properties of quadratic algebras, to which this paper aims to be a modest contribution, originates from the pioneering work of Drinfeld (see [Dr1]). In particular, as we learned after publication of [EG] (to the embarrassment of two of us!), symplectic reflection algebras, as well as PBW theorems for them, were discovered by Drinfeld in(More)
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We(More)
We construct a long exact sequence involving the homology of an FI-module. Using the long exact sequence, we give two methods to bound the Castelnuovo–Mumford regularity of an FI-module which is generated and related in finite degree. We also prove that for an FImodule which is generated and related in finite degree, if it has a nonzero higher homology,(More)
We prove a Chevalley restriction theorem and its double analogue for the cyclic quiver. The aim of this paper is to prove a Chevalley restriction theorem and its double analogue for the cyclic quiver. When the quiver is of type Â0, we recover the results for gln. The proof of our Chevalley restriction theorem is similar to the proof for gln; however, the(More)