Learn More
The model used for calculating perfusion by MRI techniques that use endogenous water as a tracer assumes that arterial water is a freely diffusible tracer. Evidence shows that this assumption is not valid in the brain at high blood flow rates, at which movement of water into and out of the microvasculature becomes limited by diffusion across the blood-brain(More)
When measuring perfusion by arterial spin labeling, saturation of tissue macromolecular spins during arterial spin labeling greatly decreases tissue water magnetization, reducing the sensitivity of the technique. In this work, a theory has been developed for perfusion measurement by arterial spin labeling without saturation of macromolecular spins. A(More)
When a single coil is used to measure perfusion by arterial spin labeling, saturation of macromolecular protons occurs during the labeling period. Induced magnetization transfer contrast (MTC) effects decrease tissue water signal intensity, reducing the sensitivity of the technique. In addition, MTC effects must be properly accounted for in acquiring a(More)
In vivo NMR experiments are performed to determine the degree of spin labeling for measurement of tissue perfusion by NMR using spin labeling of arterial water by adiabatic fast passage. Arterial water spins are labeled using flow in the presence of a field gradient and B1 irradiation to fulfill the conditions for adiabatic fast passage spin inversion. It(More)
Controlled cortical impact (CCI) is a contemporary model of experimental cerebral contusion. We examined the cerebrovascular and neuropathologic effects of a severe CCI in rats. The utility of magnetic resonance imaging (MRI) for the assessment of contusion volume after severe CCI was also established. Severe CCI (3.0 mm depth, 4 m/sec velocity) to the left(More)
The theoretical model for perfusion measurement by NMR using arterial labeling of endogenous water is extended to include the effects of transit time and cross-relaxation of tissue water with macromolecules. Water magnetization in rat brain is monitored using the STEAM method to simultaneously determine the transit time, magnetization transfer rate(More)
Isolated rat T-cells have been labeled intracellularly, using endocytosis uptake of two superparamagnetic contrast agents, AquaMag100 and BMS180549, which are both iron-oxide particles coated with dextran. No deterioration of cell proliferation response to mitogen stimulation was observed after labeling with either superparamagnetic contrast agent.(More)
Dynamic MRI tracking of rat T-cells in vivo is performed in rat testicles after labeling isolated rat T-cells in vitro with superparamagnetic dextran-coated iron-oxide particles, BMS180549. Tissue inflammation induced by the local injection of the calcium ionophore, A23187, is used to attract labeled T-cells. Gradient-echo MR images of rat testicles show a(More)
Malignant gliomas have low survival expectations regardless of current treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) prevent cell transformation and slow cancer cell growth by mechanisms independent of cyclooxygenase (COX) inhibition. Certain NSAIDs trigger the endoplasmic reticulum stress response (ERSR), as revealed by upregulation of(More)
Measurement of regional myocardial perfusion is important for the diagnosis and treatment of coronary artery disease. Currently used methods for the measurement of myocardial tissue perfusion are either invasive or not quantitative. Here, we demonstrate a technique for the measurement of myocardial perfusion using magnetic resonance imaging (MRI) with spin(More)