Wayne S. Sossin

Learn More
Nerve growth factor (NGF) is released through the constitutive secretory pathway from cells in peripheral tissues and nerves where it can act as a target-derived survival factor. In contrast, brain-derived neurotrophic factor (BDNF) appears to be processed in the regulated secretory pathway of brain neurons and secreted in an activity-dependent manner to(More)
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior.(More)
Synaptojanin is a nerve terminal protein of relative molecular mass 145,000 which appears to participate with dynamin in synaptic vesicle recycling. The central region of synaptojanin defines it as a member of the inositol-5-phosphatase family, which includes the product of the gene that is defective in the oculocerebrorenal syndrome of Lowe. Synaptojanin(More)
The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a(More)
Studies on various forms of synaptic plasticity have shown a link between messenger RNA translation, learning and memory. Like memory, synaptic plasticity includes an early phase that depends on modification of pre-existing proteins, and a late phase that requires transcription and synthesis of new proteins. Activation of postsynaptic targets seems to(More)
Schwann cells express low levels of myelin proteins in the absence of neurons. When Schwann cells and neurons are cultured together the production of myelin proteins is elevated, and myelin is formed. For peripheral myelin protein 22 (PMP22), the exact amount of protein produced is critical, because peripheral neuropathies result from its underexpression or(More)
Protein kinases A (PKA) and C (PKC) play a central role as intracellular transducers during simple forms of learning in Aplysia. These two proteins seem to cooperate in mediating the different forms of plasticity underlying behavioral modifications of defensive reflexes in a state- and time-dependent manner. Although short- and long-term changes in the(More)
In vertebrates, a brain-specific transcript from the atypical protein kinase C (PKC) zeta gene encodes protein kinase M (PKM) zeta, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMzeta, and(More)
We investigated activation of the two major neuronal protein kinase C (PKC) isoforms in Aplysia, Ca(2+)-activated Apl I and Ca(2+)-independent Apl II, during the induction and maintenance of behavioral sensitization of Aplysia defensive reflexes. Activation of PKC occurred during the training stimulus and persisted for at least 2 hr thereafter but was not(More)