Learn More
Schwann cells express low levels of myelin proteins in the absence of neurons. When Schwann cells and neurons are cultured together the production of myelin proteins is elevated, and myelin is formed. For peripheral myelin protein 22 (PMP22), the exact amount of protein produced is critical, because peripheral neuropathies result from its underexpression or(More)
We examined the effects of 3 neuropeptides and the bioactive amine 5-HT on identified motoneurons (B15 and B16) and interneurons (B4, B5) involved in the control of feeding behavior in Aplysia californica. The application of egg-laying hormone (ELH), small cardioactive peptide b (SCPb), and 5-HT elicits distinct patterns of synaptically induced bursting in(More)
Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that(More)
Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used Aplysia as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented physiological(More)
The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a(More)
Synaptojanin is a nerve terminal protein of relative molecular mass 145,000 which appears to participate with dynamin in synaptic vesicle recycling. The central region of synaptojanin defines it as a member of the inositol-5-phosphatase family, which includes the product of the gene that is defective in the oculocerebrorenal syndrome of Lowe. Synaptojanin(More)
Studies on various forms of synaptic plasticity have shown a link between messenger RNA translation, learning and memory. Like memory, synaptic plasticity includes an early phase that depends on modification of pre-existing proteins, and a late phase that requires transcription and synthesis of new proteins. Activation of postsynaptic targets seems to(More)
In vertebrates, a brain-specific transcript from the atypical protein kinase C (PKC) zeta gene encodes protein kinase M (PKM) zeta, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMzeta, and(More)
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC(More)
Protein kinase Cs (PKCs) are important effectors of synaptic plasticity. In Aplysia, there are two major phorbol ester-activated PKCs, Ca2+-activated PKC Apl I and Ca2+-independent PKC Apl II. Functional Apl II, but not Apl I, in sensory neurons is required for a form of short-term facilitation induced at sensorimotor synapses by the facilitatory(More)