Learn More
We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by(More)
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior.(More)
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. Messenger RNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live-cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized(More)
Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably(More)
  • Delphine Gobert, Lisa Topolnik, Mounia Azzi, Linda Huang, Frédérique Badeaux, Luc Desgroseillers +2 others
  • 2008
The late phase of long-term potentiation (LTP) requires activation of the mammalian target of rapamycin (mTOR) pathway and synthesis of new proteins. mTOR regulates protein synthesis via phosphorylation of 4E-binding proteins (4E-BPs) and S6K, and via selective up-regulation of 5' terminal oligopyrimidine (5' TOP) mRNAs that encode components of the(More)
Learning is highly regulated by the pattern of training. In Aplysia, an important organism for the development of cellular and molecular models of learning, spaced versus massed application of the same stimulus leads to different forms of memory. A critical molecular step underlying memory is the serotonin (5HT)-mediated activation of the novel PKC Apl II.(More)
Long-term facilitation (LTF) in Aplysia is a leading model for elucidating the biochemical mechanisms of synaptic plasticity underlying learning. LTF requires translational control downstream of target of rapamycin complex 1. Our lab has previously shown that treatment with the facilitating neurotransmitter, 5-hydroxytryptamine (5-HT), causes a target of(More)
We discovered a novel alternatively spliced form of synaptotagmin I (Syt I). This splicing event is conserved over evolution and, in Aplysia, results in a two amino acid insert in the juxtamembrane domain of Syt I (Syt IVQ). Both Syt I and Syt IVQ are localized to synaptic vesicles; however, we also observed punctae that contained one or the other spliced(More)
In brain, mRNAs are transported from the cell body to the processes, allowing for local protein translation at sites distant from the nucleus. Using subcellular fractionation, we isolated a fraction from rat embryonic day 18 brains enriched for structures that resemble amorphous collections of ribosomes. This fraction was enriched for the mRNA encoding(More)
The transport of messenger RNAs (mRNAs) in neurons serves many purposes. During development, trafficking of mRNAs to both axonal and dendritic growth cones regulates neuronal growth. After synapse formation, mRNAs continue to be transported to dendrites both as a mechanism for the localization of proteins to specific compartments and as a substrate for(More)