Wayne Gregory Somers

Learn More
The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble(More)
Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and(More)
Myostatin is a secreted growth and differentiating factor (GDF-8) that belongs to the transforming growth factor-beta (TGF-beta) superfamily. Targeted disruption of the myostatin gene in mice and a mutation in the third exon of the myostatin gene in double-muscled Belgian Blue cattle breed result in skeletal muscle hyperplasia. Hence, myostatin has been(More)
Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus(More)
Despite a century of research into the nature of animal cell division, a molecular explanation for the positioning of the actomyosin contractile ring has remained elusive. The discovery of a novel interaction between regulators of Rho family small GTPases has revealed a link between the mitotic microtubules and the contractile ring during the later stages(More)
Myostatin, a secreted growth factor, is a key negative regulator of skeletal muscle growth. To identify modifiers of Myostatin function, we screened for Myostatin interacting proteins. Using a yeast two-hybrid screen, we identified Titin-cap (T-cap) protein as interacting with Myostatin. T-cap is a sarcomeric protein that binds to the N-terminal domain of(More)
Metazoan growth and development is maintained by populations of undifferentiated cells, commonly known as stem cells. Stem cells possess several characteristic properties, including dividing through self-renewing divisions and generating progeny that differentiate to have specialized cell fates. Multiple signaling pathways have been identified which(More)
Myostatin belongs to the Transforming Growth Factor-β ((TGF-β) superfamily and is expressed in developing and mature skeletal muscle. Biologically, the role of myostatin seems to be extremely well conserved during evolution since inactivating mutations in myostatin gene cause similar phenotype of heavy muscling in both mice and cattle. In this report we(More)
The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter(More)
The mechanism for the basal targeting of the Miranda (Mira) complex during the asymmetric division of Drosophila neuroblasts (NBs) is yet to be fully understood. We have identified conserved Phosphotyrosyl phosphatase activator (PTPA) as a novel mediator for the basal localization of the Mira complex in larval brain NBs. In mutant Ptpa NBs, Mira remains(More)