Learn More
In the yeast Saccharomyces cerevisiae, glycogen is accumulated as a carbohydrate reserve when cells are deprived of nutrients. Yeast mutated in SNF1, a gene encoding a protein kinase required for glucose derepression, has diminished glycogen accumulation and concomitant inactivation of glycogen synthase. Restoration of synthesis in an snf1 strain results(More)
BACKGROUND Genetic studies of Saccharomyces cerevisiae have shown that Snf1p and Snf4p, which together form the SNF1 complex, are essential for gene derepression on removal of glucose from the medium. However the metabolic signal(s) involved, and the exact role of SNF1, have remained enigmatic. Recently, the AMP-activated protein kinase (AMPK) was shown to(More)
Mig1p is a zinc finger protein required for repression of glucose-regulated genes in budding yeast. On removal of medium glucose, gene repression is relieved via a mechanism that requires the SNF1 protein kinase complex. We show that Mig1p expressed as a glutathione-S-transferase fusion in bacteria is readily phosphorylated by the SNF1 kinase in vitro. Four(More)
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic(More)
The regulation of glycogen metabolism is critical for the maintenance of glucose and energy homeostasis in mammals. Glycogen synthase, the enzyme responsible for glycogen production, is regulated by multisite phosphorylation in yeast and mammals. We have previously identified PAS kinase as a physiological regulator of glycogen synthase in Saccharomyces(More)
The SNF1 gene encodes a protein kinase necessary for expression of glucose-repressible genes and for the synthesis of the storage polysaccharide glycogen. From a genetic screen, we have found that mutation of the PFK2 gene, which encodes the beta-subunit of 6-phosphofructo-1-kinase, restores glycogen accumulation in snf1 cells. Loss of PFK2 causes elevated(More)
Pho85p is a yeast cyclin-dependent protein kinase (Cdk) that can interact with 10 cyclins (Pcls) to form multiple protein kinases. The functions of most of the Pcls, including Pc16p and Pc17p, are poorly defined. We report here that Pc16p and Pc17p are involved in the metabolism of the branched storage polysaccharide glycogen under certain conditions and(More)
Glycogen is a branched polymer of glucose, synthesized as a reserve of both energy and carbon. The branched nature of glycogen is important for its function and polyglucosan bodies, particles that contain a glycogen-like polymer with reduced branching, are a feature of several disease states. The degree of glycogen branching is thought to be governed by the(More)
Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal(More)
We have analysed phosphorylation of the synthetic peptide AMARAASAAALARRR, and 23 variants by mammalian, higher plant and yeast members of the SNF1 protein kinase subfamily (AMP-activated protein kinase (AMPK), HMG-CoA reductase kinase (HRK-A), and SNF1 itself), and by mammalian calmodulin-dependent protein kinase I (CaMKI). These four kinases recognize(More)