Wayne A. Van Voorhies

Learn More
In general ectothermic organisms grow larger at both lower temperatures and higher latitudes. Adult size in the soil nematode Caenorhabditis elegans reared at 10°C was approximately 33% greater than worms grown at 25°C. Nematode egg size and fish red blood cell size showed similar size increases at lower temperatures. These results indicate that body size(More)
This study examined the effects of oxygen tensions ranging from 0 to 90 kPa on the metabolic rate (rate of carbon dioxide production), movement and survivorship of the free-living soil nematode Caenorhabditis elegans. C. elegans requires oxygen to develop and survive. However, it can maintain a normal metabolic rate at oxygen levels of 3.6 kPa and has(More)
The use of model organisms, such as Drosophila melanogaster, provides a powerful method for studying mechanisms of aging. Here we report on a large set of recombinant inbred (RI) D. melanogaster lines that exhibit approximately a fivefold range of average adult longevities. Understanding the factors responsible for the differences in longevity, particularly(More)
Sex and death are two fundamental but poorly understood aspects of life. They are often thought to be linked because reproduction requires the diversion of limited resources from somatic growth and maintenance. This diversion of resources in mated animals, often called a cost of reproduction, is usually expressed as a reduction of lifespan in mated animals,(More)
In a recent study examining the relationship between longevity and metabolism in a large number of recombinant inbred Drosophila melanogaster lines, we found no indication of the inverse relationship between longevity and metabolic rate that one would expect under the classical "rate of living" model. A potential limitation in generalizing from that study(More)
This study examined the metabolic response of Drosophila melanogaster exposed to O(2) concentrations ranging from 0 to 21% and at 100%. The metabolic rate of flies exposed to graded hypoxia remained nearly constant as O(2) tensions were reduced from normoxia to approximately 3 kPa. There was a rapid, approximately linear reduction in fly metabolic rate at(More)
Mutations affecting the Na+, K+ ATPase alpha subunit have been implicated in at least two distinct human diseases, rapid-onset dystonia Parkinsonism (RDP), and familial hemiplegic migraine (FHM). Over 40 mutations have been mapped to the human ATP1A2 and ATP1A3 genes and are known to result in RDP, FHM or a variant of FHM with neurological complications. To(More)
Mitochondrial encephalomyopathies are common and devastating multisystem genetic disorders characterized by neuromuscular dysfunction and tissue degeneration. Point mutations in the human mitochondrial ATP6 gene are known to cause several related mitochondrial disorders: NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh's(More)
Numerous mitochondrial DNA mutations cause mitochondrial encephalomyopathy: a collection of related diseases for which there exists no effective treatment. Mitochondrial encephalomyopathies are complex multisystem diseases that exhibit a relentless progression of severity, making them both difficult to treat and study. The pathogenic and compensatory(More)