Learn More
The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise(More)
Mutation dictates the tempo and mode of evolution, and like all traits, the mutation rate is subject to evolutionary modification. Here, we report refined estimates of the mutation rate for a prokaryote with an exceptionally small genome and for a unicellular eukaryote with a large genome. Combined with prior results, these estimates provide the basis for a(More)
We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most(More)
Knowledge of mutation processes is central to understanding virtually all evolutionary phenomena and the underlying nature of genetic disorders and cancers. However, the limitations of standard molecular mutation detection methods have historically precluded a genome-wide understanding of mutation rates and spectra in the nuclear genomes of multicellular(More)
The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA)(More)
Rates and mechanisms of intron gain and loss have traditionally been inferred from alignments of highly conserved genes sampled from phylogenetically distant taxa. We report a population-genomic approach that detected 24 discordant intron/exon boundaries between the whole-genome sequences of two Daphnia pulex isolates. Sequencing of presence/absence loci(More)
Mutation plays a central role in all evolutionary processes and is also the basis of genetic disorders. Established base-substitution mutation rates in eukaryotes range between ∼5 × 10(-10) and 5 × 10(-8) per site per generation, but here we report a genome-wide estimate for Paramecium tetraurelia that is more than an order of magnitude lower than any(More)
Spontaneous mutations are ultimately essential for evolutionary change and are also the root cause of many diseases. However, until recently, both biological and technical barriers have prevented detailed analyses of mutation profiles, constraining our understanding of the mutation process to a few model organisms and leaving major gaps in our understanding(More)
Ribosomal loci represent a major tool for investigating environmental diversity and community structure via high-throughput marker gene studies of eukaryotes (e.g. 18S rRNA). Since the estimation of species' abundance is a major goal of environmental studies (by counting numbers of sequences), understanding the patterns of rRNA copy number across species(More)
Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and probably play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world's largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst(More)