Wataru Marubashi

Learn More
To elucidate the genetic mechanism of hybrid lethality observed in hybrids between cultivated tobacco, Nicotiana tabacum, and wild tobacco species in the section Suaveolentes, genetic analyses were conducted through the triple cross of the hybrids of wild species, including N. benthamiana and N. fragrans, and N. tabacum. N. benthamiana and N. fragrans(More)
BACKGROUND Many species of Nicotiana section Suaveolentes produce inviable F(1) hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction(More)
BACKGROUND A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived(More)
PCD with features of vacuolar cell death including autophagy-related features were detected in hybrid tobacco cells, and detailed time course of features of vacuolar cell death were established. A type of interspecific Nicotiana hybrid, Nicotiana suaveolens × N. tabacum exhibits temperature-sensitive lethality. This lethality results from programmed cell(More)
Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis × N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris(More)
  • 1