Wassim M. Haddad

Learn More
Nonnegative and compartmental dynamical system models are derived from mass and energy balance considerations and involve the exchange of nonnegative quantities between subsystems or compartments. These models are widespread in biological and physical sciences and play a key role in understanding these processes. A key physical limitation of such systems is(More)
In a companion paper ('Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability. Part I: Continuous-time theory'), Lyapunov functions were constructed in a unified framework to prove sufficiency in the small gain, positivity, circle, and Popov theorems. In this(More)
We extend the notion of dissipative dynamical systems to formalize the concept of the nonlinear analog of strict positive realness and strict bounded realness. In particular, using exponentially weighted system storage functions with appropriate exponentially weighted supply rates, we introduce the concept of exponential dissipativity. The proposed results(More)
is published by Princeton University Press and copyrighted, © 2006, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and(More)
Pain assessment in patients who are unable to verbally communicate with medical staff is a challenging problem in patient critical care. The fundamental limitations in sedation and pain assessment in the intensive care unit (ICU) stem from subjective assessment criteria, rather than quantifiable, measurable data for ICU sedation and analgesia. This often(More)
In this paper, a neuroadaptive control framework for continuous- and discrete-time nonlinear uncertain dynamical systems with input-to-state stable internal dynamics is developed. The proposed framework is Lyapunov based and unlike standard neural network (NN) controllers guaranteeing ultimate boundedness, the framework guarantees partial asymptotic(More)
The potential clinical applications of active control for pharmacology in general, and anesthesia and critical care unit medicine in particular, are clearly apparent. Specifically, monitoring and controlling the depth of anesthesia in surgery and the intensive care unit is of particular importance. Nonnegative and compartmental models provide a broad(More)
Abstract: In many applications of feedback control, phase information is available concerning the plant uncertainty. For example, lightly damped flexible structures with colocated rate sensors and force actuators give rise to positive real transfer functions. Closed-loop stability is thus guaranteed by means of negative feedback with strictly positive real(More)