Learn More
The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species(More)
Supertrees combine disparate, partially overlapping trees to generate a synthesis that provides a high level perspective that cannot be attained from the inspection of individual phylogenies. Supertrees can be seen as meta-analytical tools that can be used to make inferences based on results of previous scientific studies. Their meta-analytical application(More)
The origin of the eukaryotic cell is considered one of the major evolutionary transitions in the history of life. Current evidence strongly supports a scenario of eukaryotic origin in which two prokaryotes, an archaebacterial host and an α-proteobacterium (the free-living ancestor of the mitochondrion), entered a stable symbiotic relationship. The(More)
Since their advent, supertrees have been increasingly used in large-scale evolutionary studies requiring a phylogenetic framework and substantial efforts have been devoted to developing a wide variety of supertree methods (SMs). Recent advances in supertree theory have allowed the implementation of maximum likelihood (ML) and Bayesian SMs, based on using an(More)
Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene(More)
David Thybert, Maša Roller, Fábio C.P. Navarro, Ian Fiddes, Ian Streeter, Christine Feig, David Martin-Galvez, Mikhail Kolmogorov, Václav Janoušek, Wasiu Akanni, Bronwen Aken, Sarah Aldridge, Varshith Chakrapani, William Chow, Laura Clarke, Carla Cummins, 10 Anthony Doran, Matthew Dunn, Leo Goodstadt, Kerstin Howe, Matthew Howell, AmbreAurore Josselin,(More)
  • 1