#### Filter Results:

#### Publication Year

2010

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

A single-elimination (SE) tournament is a popular way to select a winner in both sports competitions and in elections. A natural and well-studied question is the tournament fixing problem (TFP): given the set of all pairwise match outcomes, can a tournament organizer rig an SE tournament by adjusting the initial seeding so that their favorite player wins?… (More)

Inspired by applications in parallel computing, we analyze the setting of work stealing in multithreaded computations. We obtain tight upper bounds on the number of steals when the computation can be modeled by rooted trees. In particular, we show that if the computation with n processors starts with one processor having a complete k-ary tree of height h… (More)

We consider an assignment problem that has aspects of fair division as well as social choice. In particular, we investigate the problem of assigning a small subset from a set of indivisible items to multiple players so that the chosen subset is agreeable to all players, i.e., every player weakly prefers the chosen subset to any subset of its complement. For… (More)

Fair division has long been an important problem in the economics literature. In this note, we consider the existence of proportionally fair allocations of indivisible goods, i.e., allocations of indivisible goods in which every agent gets at least her proportionally fair share according to her own utility function. We show that when utilities are additive… (More)

We study the problem of scheduling asynchronous round-robin tournaments. We consider three measures of a schedule that concern the quality and fairness of a tournament. We show that the schedule generated by the well-known " circle design " performs well with respect to all three measures when the number of teams is even, but not when the number of teams is… (More)

This paper investigates a variant of the work-stealing algorithm that we call the localized work-stealing algorithm. The intuition behind this variant is that because of locality, processors can benefit from working on their own work. Consequently, when a processor is free, it makes a steal attempt to get back its own work. We call this type of steal a… (More)

In the early 1950s Lloyd Shapley proposed an ordinal and set-valued solution concept for zero-sum games called weak saddle. We show that all weak saddles of a given zero-sum game are interchangeable and equivalent. As a consequence, every such game possesses a unique set-based value.

Random dictatorship has been characterized as the only social decision scheme that satisfies efficiency and strategyproofness when individual preferences are strict. We show that no extension of random dictatorship to weak preferences satisfies these properties, even when significantly weakening the required degree of strategyproofness.

We consider a class of coalition formation games called he-donic games, i.e., games in which the utility of a player is completely determined by the coalition that the player belongs to. We first define the class of subset-additive hedonic games and show that they have the same representation power as the class of hedonic games. We then define a restriction… (More)

We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of… (More)