Warren J. Gross

Learn More
Stochastic decoding is a new approach to iterative decoding on graphs. This paper presents a hardware architecture for fully parallel stochastic low-density parity-check (LDPC) decoders. To obtain the characteristics of the proposed architecture, we apply this architecture to decode an irregular state-of-the-art (1056,528) LDPC code on a Xilinx Virtex-4(More)
Polar codes are a recently discovered family of capacity-achieving codes that are seen as a major breakthrough in coding theory. Motivated by the recent rapid progress in the theory of polar codes, we propose a semi-parallel architecture for the implementation of successive cancellation decoding. We take advantage of the recursive structure of polar codes(More)
The recently-discovered polar codes are widely seen as a major breakthrough in coding theory. These codes achieve the capacity of many important channels under successive cancellation decoding. Motivated by the rapid progress in the theory of polar codes, we propose a family of architectures for efficient hardware implementation of successive cancellation(More)
This paper proposes majority-based tracking forecast memories (MTFMs) for area efficient high throughput ASIC implementation of stochastic Low-Density Parity-Check (LDPC) decoders. The proposed method is applied for ASIC implementation of a fully parallel stochastic decoder that decodes the (2048, 1723) LDPC code from the IEEE 802.3an (10GBASE-T) standard.(More)
This letter presents the first successful method for iterative stochastic decoding of state-of-the-art Low-Density Parity-Check (LDPC) codes. The proposed method shows the viability of the stochastic approach for decoding LDPC codes on factor graphs. In addition, simulation results for a 200 and a 1024 length LDPC code demonstrate the near-optimal(More)
The Koetter-Vardy algorithm is an algebraic soft-decision decoder for Reed-Solomon codes which is based on the Guruswami-Sudan list decoder. There are three main steps: 1) multiplicity calculation, 2) interpolation and 3) root finding. The Koetter-Vardy algorithm seems challenging to implement due to the high cost of interpolation. Motivated by a VLSI(More)
Polar codes provably achieve the symmetric capacity of a memoryless channel while having an explicit construction. The adoption of polar codes however, has been hampered by the low throughput of their decoding algorithm. This work aims to increase the throughput of polar decoding hardware by an order of magnitude relative to successive-cancellation decoders(More)
Efficient soft-decision decoding of Reed-Solomon codes is made possible by the Koetter-Vardy (KV) algorithm which consists of a front-end to the interpolation-based Guruswami-Sudan list decoding algorithm. This paper approaches the soft-decision Koetter-Vardy algorithm from the point of view of a communications systems designer who wants to know what(More)