Learn More
A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical(More)
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned(More)
Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate(More)
Sequence similarity between a translated nucleotide sequence and a known biological protein can provide strong evidence for the presence of a homologous coding region, even between distantly related genes. The computer program BLASTX performed conceptual translation of a nucleotide query sequence followed by a protein database search in one programmatic(More)
Sequence similarity search programs are versatile tools for the molecular biologist, frequently able to identify possible DNA coding regions and to provide clues to gene and protein structure and function. While much attention had been paid to the precise algorithms these programs employ and to their relative speeds, there is a constellation of associated(More)
Single-nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and a resource for mapping complex genetic traits. The large volume of data produced by high-throughput sequencing projects is a rich and largely untapped source of SNPs (refs 2, 3, 4, 5). We present here a unified approach to the discovery of variations in genetic(More)
Comparative sequence analysis has facilitated the discovery of protein coding genes and important functional sequences within proteins, but has been less useful for identifying functional sequence elements in nonprotein-coding DNA because the relatively rapid rate of change of nonprotein-coding sequences and the relative simplicity of non-coding regulatory(More)
With the availability of a nearly complete sequence of the human genome, aligning expressed sequence tags (EST) to the genomic sequence has become a practical and powerful strategy for gene prediction. Elucidating gene structure is a complex problem requiring the identification of splice junctions, gene boundaries, and alternative splicing variants. We have(More)
We report the generation of 319,311 single-pass sequencing reactions (known as expressed sequence tags, or ESTs) obtained from the 5' and 3' ends of 194,031 human cDNA clones. Our goal has been to obtain tag sequences from many different genes and to deposit these in the publicly accessible Data Base for Expressed Sequence Tags. Highly efficient automatic(More)