Learn More
An investigation has been made into the effect produced by photo-induced pyrimidine cross-links upon the secondary structure of DNA. We have studied the effect of uv irradiation upon the B in equilibrium A transition in DNA brought about by a change of solvent from 70 to 80% ethanol. Circular dichroism (CD) was used to monitor the conformational changes.(More)
Normal modes analyses for different molecules with biological interest have been performed and checked via the calculation of resonance Raman intensities. For this purpose, molecular orbital calculations were used to determine bond order changes in the lowest-lying electronic transitions. These bond order changes were used to calculate resonance Raman(More)
Raman difference spectroscopy has been applied to aqueous dispersions of dipalmitoyl phosphatidylcholine (DPPC). Difference spectra have been created by computer subtraction of absolute Raman spectra taken in each of three different temperature ranges: below the endothermic pretransition at 34 +/- 2 degrees C; between this temperature and the melting(More)
Large and abrupt changes are observed at 38 degrees C in the 1100 cm(-1) region of the Raman spectrum of aqueous dipalmitoyl lecithin multilayers. They correspond to conformational changes due to the melting of the paraffin side chains. The addition of cholesterol to the multilayers broadens but does not abolish these changes. It is suggested that the(More)
The now well-established use of Raman spectroscopy to examine the structure of biomembranes is extended through an examination of the origins of the structure-sensitive features of phospholipid spectra and the development of quantitative order-parameters. One parameter gives a quantitative measure of the fraction of all-trans bonds in the hydrocarbon chains(More)
Raman spectra of the parallel-stranded duplex formed from the deoxyoligonucleotides 5'-d-[(A)10TAATTTTAAATATTT]-3' (D1) and 5'-d[(T)10ATTAAAATTTATAAA]-3' (D2) in H2O and D2O have been acquired. The spectra of the parallel-stranded DNA are then compared to the spectra of the antiparallel double helix formed from the deoxyoligonucleotides D1 and(More)