Ward B. Watt

Learn More
Demographically oriented sampling in the wild and biochemical study of allozymes in the laboratory have been used to probe maintenance of the phosphoglucose isomerase polymorphism of Colias butterflies.-The several alleles at this locus show negative or no covariation among their frequencies in the wild. This rules out Wahlund effects as a cause of(More)
Population structure encompasses all the rules by which a population's gametes come together, including genetic and physiological investment in offspring. We document female use of nutrients donated by males at mating, and complete sperm precedence, in Colias eurytheme Boisduval. The effect of these phenomena on the population structure of this species is(More)
Electrophoretic variants of phosphoglucose isomerase (PGI) in Colias butterflies have been studied from field and laboratory viewpoints. The transmission pattern is that of a dimeric enzyme controlled by one structural gene locus. Populations usually harbor four to six allelic mobility classes. These mobility classes are shared among species complexes,(More)
Knowledge of both prokaryotic and eukaryotic organisms is essential to the study of molecular evolution. Their common ancestry mandates that their molecular functions share many aspects of adaptation and constraint, yet their differences in size, ploidy, and structural complexity also give rise to divergent evolutionary options. We explore the interplay of(More)
Colias eurytheme butterflies display extensive allozyme polymorphism in the enzyme phosphoglucose isomerase (PGI). Earlier studies on biochemical and fitness effects of these genotypes found evidence of strong natural selection maintaining this polymorphism in the wild. Here we analyze the molecular features of this polymorphism by sequencing multiple(More)
  • W B Watt
  • Proceedings of the National Academy of Sciences…
  • 1992
Phosphoglucose isomerase genotypes in the butterfly Colias differ dramatically in biochemical properties. These differences were evaluated earlier, using metabolic network theory, to predict, successfully, their effects on glycolytic metabolism and hence on Colias flight capacity and several consequent fitness components in the wild. Female egg-laying, not(More)
The sex-limited "alba" genetic polymorphism in wing color of Colias butterflies has been studied with respect to potential selective pressures on this locus. Alba female pupae, carrying at least one dominant A allele, redirect resources, used by aa pupae for pigmentation, to other metabolic ends. Associated with this reallocation, alba, A-, female adults(More)
Previous work on the phosphoglucose isomerase (PGI) polymorphism of Colias butterflies led to predictions concerning aspects of differential survivorship and fecundity among the polymorphic genotypes in the wild. Explicit assumptions underlying these predictions were that functional differences among genotypes at the in vitro biochemical level reflected(More)