Learn More
Demographically oriented sampling in the wild and biochemical study of allozymes in the laboratory have been used to probe maintenance of the phosphoglucose isomerase polymorphism of Colias butterflies.-The several alleles at this locus show negative or no covariation among their frequencies in the wild. This rules out Wahlund effects as a cause of(More)
  • W B Watt
  • 1969
The butterfly Colias eurytheme requires body temperatures above 30 degrees C for flight. When cold, it orients its exposed wing undersides to present maximum surface area to sunlight; when too warm, it orients for minimum exposure. Dark-winged color forms heat faster in sunlight than light ones. The seasonal color polymorphism of Colias appears to have been(More)
As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen(More)
Postzygotic isolation between incipient species results from the accumulation of incompatibilities that arise as a consequence of genetic divergence. When phenotypes are determined by regulatory interactions, hybrid incompatibility can evolve even as a consequence of parallel adaptation in parental populations because interacting genes can produce the same(More)
Knowledge of both prokaryotic and eukaryotic organisms is essential to the study of molecular evolution. Their common ancestry mandates that their molecular functions share many aspects of adaptation and constraint, yet their differences in size, ploidy, and structural complexity also give rise to divergent evolutionary options. We explore the interplay of(More)
Colias eurytheme butterflies display extensive allozyme polymorphism in the enzyme phosphoglucose isomerase (PGI). Earlier studies on biochemical and fitness effects of these genotypes found evidence of strong natural selection maintaining this polymorphism in the wild. Here we analyze the molecular features of this polymorphism by sequencing multiple(More)
  • W B Watt
  • 1992
Phosphoglucose isomerase genotypes in the butterfly Colias differ dramatically in biochemical properties. These differences were evaluated earlier, using metabolic network theory, to predict, successfully, their effects on glycolytic metabolism and hence on Colias flight capacity and several consequent fitness components in the wild. Female egg-laying, not(More)
Previous work on the phosphoglucose isomerase (PGI) polymorphism of Colias butterflies led to predictions concerning aspects of differential survivorship and fecundity among the polymorphic genotypes in the wild. Explicit assumptions underlying these predictions were that functional differences among genotypes at the in vitro biochemical level reflected(More)
Male mating success as a function of genotype is an important fitness component. It can be studied in wild populations, in species for which a given group of progeny has exactly one father, by determining genotypes of wildcaught mothers and of sufficient numbers of their progeny. Here, we study male mating success as a function of allozyme genotype at two(More)