Learn More
PURPOSE To directly compare functional connectivity and spatiotemporal dynamics acquired with blood oxygenation level-dependent (BOLD) and cerebral blood volume (CBV)-weighted functional magnetic resonance imaging (fMRI) in anesthetized rats. MATERIALS AND METHODS A series of BOLD images were acquired in 10 rats followed by CBV-weighted images created by(More)
PURPOSE To examine spatiotemporal dynamics of low frequency fluctuations in rat cortex. MATERIALS AND METHODS Gradient-echo echo-planar imaging images were acquired from anesthetized rats (repetition time = 100 ms). Power spectral analysis was performed to detect different frequency peaks. Functional connectivity maps were obtained for the frequency peaks(More)
Functional connectivity measures based upon low-frequency blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) signal fluctuations have become a widely used tool for investigating spontaneous brain activity in humans. Still unknown, however, is the precise relationship between neural activity, the hemodynamic response and(More)
Most studies involving spontaneous fluctuations in the BOLD signal extract connectivity patterns that show relationships between brain areas that are maintained over the length of the scanning session. In this study, however, we examine the spatiotemporal dynamics of the BOLD fluctuations to identify common patterns of propagation within a scan. A novel(More)
BACKGROUND High throughput, brain-wide analysis of neural circuit connectivity is needed to understand brain function across species. Combining such tractography techniques with small animal models will allow more rapid integration of systems neuroscience with molecular genetic, behavioral, and cellular approaches. METHODS We collected DTI and T2 scans on(More)
To examine the neural basis of the blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) signal, we have developed a rodent model in which functional MRI data and in vivo intracortical recording can be performed simultaneously. The combination of MRI and electrical recording is technically challenging because the electrodes used for(More)
Independent component analysis (ICA) has been successfully utilized for analysis of functional MRI (fMRI) data for task related as well as resting state studies. Although it holds the promise of becoming an unbiased data-driven analysis technique, a few choices have to be made prior to performing ICA, selection of a method for determining the number of(More)
Computer assisted electroencephalograph analysis tools are trained to classify the data based upon the " ground truth " provided by the clinicians. After development and delivery of these systems there is no simple mechanism for these clinicians to improve the system's classification while encountering any false classification by the system. So the(More)