• Citations Per Year
Learn More
The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One(More)
The Ni-rich layered oxides with a Ni content of >0.5 are drawing much attention recently to increase the energy density of lithium-ion batteries. However, the Ni-rich layered oxides suffer from aggressive reaction of the cathode surface with the organic electrolyte at the higher operating voltages, resulting in consequent impedance rise and capacity fade.(More)
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the(More)
As nickel-rich layered oxide cathodes start to attract worldwide interest for the next-generation lithium-ion batteries, their long-term cyclability in full cells remains a challenge for electric vehicles. Here we report a long-life Ni-rich layered oxide cathode (LiNi0.7Co0.15Mn0.15O2) with a uniform surface coating of the cathode particles with Li2ZrO3. A(More)
The formation of metallic lithium microstructures in the form of dendrites or mosses at the surface of anode electrodes (e.g., lithium metal, graphite, and silicon) leads to rapid capacity fade and poses grave safety risks in rechargeable lithium batteries. We present here a direct, relative quantitative analysis of lithium deposition on graphite anodes in(More)
  • 1