Wang-Sang Koon

Learn More
In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system,(More)
In this paper we establish necessary conditions for optimal control using the ideas of Lagrangian reduction in the sense of reduction under a symmetry group. The techniques developed here are designed for Lagrangian mechanical control systems with symmetry. The benefit of such an approach is that it makes use of the special structure of the system,(More)
The title of this paper is inspired by the work of Poincaré [1890, 1892], who introduced many key dynamical systems methods during his research on celestial mechanics and especially the three body problem. Since then, many researchers have contributed to his legacy by developing and applying these methods to problems in celestial mechanics and, more(More)
The purpose of this paper is to describe the general setting for the application of techniques from geometric mechanics and dynamical systems to the problem of asteroid pairs. The paper also gives some preliminary results on transport calculations and the associated problem of calculating binary asteroid escape rates. The dynamics of an asteroid pair,(More)
  • 1