Learn More
Meiosis and recombination are the two opposite aspects that coexist in a DNA system. As a driving force for evolution by generating natural genetic variations, meiotic recombination plays a very important role in the formation of eggs and sperm. Interestingly, the recombination does not occur randomly across a genome, but with higher probability in some(More)
Before becoming the native proteins during the biosynthesis, their polypeptide chains created by ribosome's translating mRNA will undergo a series of "product-forming" steps, such as cutting, folding, and posttranslational modification (PTM). Knowledge of PTMs in proteins is crucial for dynamic proteome analysis of various human diseases and epigenetic(More)
Enzymes play pivotal roles in most of the biological reaction. The catalytic residues of an enzyme are defined as the amino acids which are directly involved in chemical catalysis; the knowledge of these residues is important for understanding enzyme function. Given an enzyme, which residues are the catalytic sites, and which residues are not? This is the(More)
Protein phosphorylation is a posttranslational modification (PTM or PTLM), where a phosphoryl group is added to the residue(s) of a protein molecule. The most commonly phosphorylated amino acids occur at serine (S), threonine (T), and tyrosine (Y). Protein phosphorylation plays a significant role in a wide range of cellular processes; meanwhile its(More)
Protein hydroxylation is a posttranslational modification (PTM), in which a CH group in Pro (P) or Lys (K) residue has been converted into a COH group, or a hydroxyl group (-OH) is converted into an organic compound. Closely associated with cellular signaling activities, this type of PTM is also involved in some major diseases, such as stomach cancer and(More)
Post-translational modifications (PTMs) play vital roles in most of the protein maturation, structural stabilization and function. How to predict protein' PTMs types is an important and challenging problem. Most of the existing approaches can only be used to recognize single-label PTMs type. By introducing the multi-labeled K-Nearest-Neighbor algorithm, a(More)
  • 1