Wang Nguitragool

Learn More
CLC-ec1 is a prokaryotic CLC-type Cl(-)/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl-. A critical glutamate residue, E148, was previously shown to be required for Cl(-)/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the(More)
Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for(More)
The plasmodial surface anion channel (PSAC) increases erythrocyte permeability to many solutes in malaria but has uncertain physiological significance. We used a PSAC inhibitor with different efficacies against channels from two Plasmodium falciparum parasite lines and found concordant effects on transport and in vitro parasite growth when external nutrient(More)
CLC-ec1 is a bacterial archetype of CLC transporters, a ubiquitous class of proteins that catalyze transmembrane exchange of Cl- and H+ necessary for pH regulation of numerous physiological processes. Despite a profusion of high-resolution structures, the molecular mechanism of exchange remains unknown. Here, we rigorously demonstrate strict exchange(More)
In retinal rods, light-induced isomerization of 11-cis-retinal to all-trans-retinal within rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP. Consequently, cyclic nucleotide-gated (CNG) ion channels close, generating the first electrical response to light. After isomerization, all-trans-retinal dissociates from rhodopsin. We now(More)
CLC Cl(-)/H(+) exchangers are homodimers with Cl(-)-binding and H(+)-coupling residues contained within each subunit. It is not known whether the transport mechanism requires conformational rearrangement between subunits or whether each subunit operates as a separate exchanger. We designed various cysteine substitution mutants on a cysteine-less background(More)
The plasmodial surface anion channel mediates uptake of nutrients and other solutes into erythrocytes infected with malaria parasites. The clag3 genes of P. falciparum determine this channel's activity in human malaria, but how the encoded proteins contribute to transport is unknown. Here, we used proteases to examine the channel's composition and function.(More)
Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We(More)
Acquired antimalarial drug resistance produces treatment failures and has led to periods of global disease resurgence. In Plasmodium falciparum, resistance is known to arise through genome-level changes such as mutations and gene duplications. We now report an epigenetic resistance mechanism involving genes responsible for the plasmodial surface anion(More)
Rod vision begins when 11-cis-retinal absorbs a photon and isomerizes to all-trans-retinal (ATR) within the photopigment, rhodopsin. Photoactivated rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP, thereby closing cyclic nucleotide-gated (CNG) ion channels. After isomerization, ATR dissociates from rhodopsin, and after a bright(More)