Wan Zhen Liang

Learn More
We present an extension of the density-matrix-based linear-scaling electronic structure theory to incorporate spin degrees of freedom. When the spin multiplicity of the system can be predetermined, the generalization of the existing linear-scaling methods to spin-unrestricted cases is straightforward. However, without calculations it is hard to determine(More)
Although abnormal soluble fms-like tyrosine kinase-1 (sFlt-1) production is thought to be an important factor in the pathogenesis of pre-eclampsia, the mechanisms that regulate the production of sFlt-1 during pre-eclampsia are unclear. Accumulation of advanced glycation end products (AGEs) is prevalent in obesity, advanced maternal age, diabetes mellitus,(More)
Activin A (Act A), a member of transforming growth factor-β (TGF-β) superfamily, is an early gene in response to cerebral ischemia. Growing evidences confirm the neuroprotective effect of Act A in ischemic injury through Act A/Smads signal activation. In this process, regulation networks are involved in modulating the outcomes of Smads signaling. Among(More)
Starting from the equation of motion in the density matrix formulation, we reformulate the analytical gradient of the excited-state energy at the time-dependent density functional theory level in the nonorthogonal Gaussian atom-centered orbital (AO) basis. Analogous to the analytical first derivative in molecular-orbital (MO) basis, a Z-vector equation has(More)
We have developed a linear scaling algorithm for calculating maximally localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals.(More)