Wan Seok Kang

Learn More
High glucose-insulted bone marrow-derived mesenchymal stem cells (BMCs) showed impaired angiogenesis along with downregulation of stem cell factor (SCF). This study was designed to determine the involvement of microRNAs (miR), which are actively involved in the physiological function of stem cells. We observed that miR-34c was significantly induced by high(More)
Angiogenesis is the main therapeutic mechanism of cell therapy for cardiovascular diseases, but diabetes is reported to reduce the function and number of progenitor cells. Therefore, we studied the effect of streptozotocin-induced diabetes on the bone marrow-mesenchymal stem cell (MSC) function, and examined whether diabetes-impaired MSC could be rescued by(More)
In this paper, we propose a color transparent liquid crystal (LC) mode that can control the properties of the color gamut and transparency in a single panel. To achieve high transmittance in the transparent LC mode, a reactive mesogen (RM) with embedded color dichroic dyes was applied instead of a color filter. Basically, the LC mode applied a 3-terminal(More)
OBJECTIVE Cilostazol, a selective phosphodiesterase-3 (PDE-3) inhibitor, can effectively suppress platelet activation and attenuate the increase in carotid intima-media thickness in diabetes mellitus (DM) patients. Therefore, we investigated whether cilostazol had effects on the healing process after implantation of a drug-eluting stent (DES) in a rat model(More)
AIMS We elucidated the therapeutic potential of human umbilical vein endothelial cells (HUVECs) for ameliorating progressive heart failure in a myocardial infarction (MI) rat model. MAIN METHODS MI was induced by ligation of left anterior descending artery, and HUVEC was transplanted 1week after MI. Cardiac function was evaluated by echocardiography, and(More)
Although mesenchymal stem cells (MSC) have been shown to be safe in preclinical studies of cardiovascular disease, multiple meta-analyses have debated whether functional improvement is significant or not. The cardiac differentiation from MSC is achievable using cardiogenic factors, however, the high cost and long culture period may limit the applications.(More)
Pressure overload in the heart induces pathological hypertrophy and is associated with cardiac dysfunction. Apoptosis and fibrosis signaling initiated by the endoplasmic reticulum stress (ERS) is known to contribute to these maladaptive effects. The aim of this study was to investigate whether reduction of ERS by a known chemical chaperone,(More)
BACKGROUND AND OBJECTIVES Diabetes is reported to reduce the function or number of progenitor cells. We compared the gene expression patterns of bone marrow-derived mesenchymal stem cells from diabetic (DM-BMCs) and healthy (non-DM-BMCs) rats and suggested Angiopoietin-like 4 (Angptl4) could be a responsible factor for impaired angiogenesis of DM-BMCs. (More)
The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) modulated the cardiac microenvironment to exert a(More)
Although cell therapy is emerged for cardiac repair, its efficacy is modest by intracoronary infusion. Therefore, we established the intramyocardial delivery technique using a left ventricular (LV) mapping system (NOGA® XP) using 18 pigs. After adipose tissue-derived mesenchymal stem cells (ATSCs) were delivered intramyocardially to porcine infarcted heart,(More)