Walther J. A. A. van den Broek

Learn More
The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for(More)
Myotonic dystrophy (DM) is commonly associated with CTG repeat expansions within the gene for DM-protein kinase (DMPK). The effect of altered expression levels of DMPK, which is ubiquitously expressed in all muscle cell lineages during development, was examined by disrupting the endogenous Dmpk gene and overexpressing a normal human DMPK transgene in mice.(More)
Myotonic dystrophy type 1 (DM1) is caused by toxicity of an expanded, noncoding (CUG)n tract in DM protein kinase (DMPK) transcripts. According to current evidence the long (CUG)n segment is involved in entrapment of muscleblind (Mbnl) proteins in ribonuclear aggregates and stabilized expression of CUG binding protein 1 (CUGBP1), causing aberrant premRNA(More)
The mechanism of trinucleotide repeat expansion, an important cause of neuromuscular and neurodegenerative diseases, is poorly understood. We report here on the study of the role of flap endonuclease 1 (Fen1), a structure-specific nuclease with both 5' flap endonuclease and 5'-3' exonuclease activity, in the somatic hypermutability of the (CTG)(n)*(CAG)(n)(More)
Myotonic dystrophy (DM) is the most prevalent inherited neuromuscular disease in adults. The genetic defect is a CTG triplet repeat expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase ( DMPK ) gene, consisting of 15 exons. Using a transgenic DMPK-overexpressor mouse model, we demonstrate here that the endogenous mouse DMPK gene(More)
Apolipoprotein (apo) E is a ligand for the receptor-mediated uptake of lipoprotein remnant particles. Complete absence of apo E in humans leads to a severe form of type III hyperlipoproteinemia. We have used targeted inactivation in murine embryonic stem cells, as also described by others, to specifically study the effects of heterozygous Apoe gene loss on(More)
Abnormal expression of human myotonic dystrophy protein kinase (hDMPK) gene products has been implicated in myotonic dystrophy type 1 (DM1), yet the impact of distress accumulation produced by persistent overexpression of this poorly understood member of the Rho kinase-related protein kinase gene-family remains unknown. Here, in the aged transgenic murine(More)
A decrease in serum zinc can be caused by a real zinc deficiency but can also be caused by an apparent zinc deficiency, e.g. in inflammatory stress. The aim of this study was to evaluate the diagnostic power of serum alkaline phosphatase (AP) activity in the discrimination between pathophysiologic states of "real" and "apparent" zinc deficiency. A decrease(More)
The genes encoding apolipoprotein (apo) E and apoC1 are, together with the gene for apoC2, located in a conserved gene cluster on human chromosome 19q12-13.2 and mouse chromosome 7. Although the significance of apoE as a ligand for receptor-mediated uptake of lipoprotein remnant particles is undisputed, the in vivo function of apoC1 and the possible(More)