Walter W. Reisner

Learn More
We show that genomic-length DNA molecules imaged in nanochannels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
We have studied the capillary spreading of a Newtonian liquid along hydrophilic microstripes that are chemically defined on a hydrophobic substrate. The front of the spreading film advances in time according to a power law x=Bt(1/2). This exponent of 1/2 is much larger than the value 1/10 observed in the axisymmetric spreading of a wetting droplet. It is(More)
We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient udT/dxu and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of(More)
We have performed single-molecule studies of GFP-LacI repressor proteins bound to bacteriophage lambda DNA containing a 256 tandem lac operator insertion confined in nanochannels. An integrated photon molecular counting method was developed to determine the number of proteins bound to DNA. By using this method, we determined the saturated mean occupancy of(More)
Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips and peaks in the intensity trace along the extended molecule. We(More)
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of(More)
We show that the ionic environment plays a critical role in determining the configurational properties of DNA confined in silica nanochannels. The extension of DNA in the nanochannels increases as the ionic strength is reduced, almost tripling over two decades in ionic strength for channels around 100 x 100 nm in dimension. Surprisingly, we find that the(More)
We demonstrate a confinement spectroscopy technique capable of probing small conformational changes of unanchored single DNA molecules in a manner analogous to force spectroscopy, in the regime corresponding to femtonewton forces. In contrast to force spectroscopy, various structural forms of DNA can easily be probed, as indicated by experiments on linear(More)
Nanochannel technology, coupled with a suitable DNA labeling chemistry, is a powerful approach for performing high-throughput single-molecule mapping of genomes. Yet so far nanochannel technology has remained inaccessible to the broader research community due to high fabrication cost and/or requirement of specialized facilities/skill-sets. In this article(More)