Walter K. Schlage

Learn More
Cytokeratin (CK) polypeptides constitute the intermediate filament cytoskeleton of epithelial cells. The patterns of CK expression can be regarded as specific markers for the epithelial differentiation status. Our objective was to map the cell type-specific CK expression patterns at all representative sites of the respiratory tract of untreated rats to use(More)
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research(More)
Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to(More)
Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures(More)
Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal,(More)
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD(More)
Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including tobacco products in a systems toxicology setting such as the "21st Century Toxicology", we are building a series of computable biological network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the(More)
In vitro cell transformation assays detect transformed cells that have acquired the distinct characteristics of malignant cells and thus model one stage of in vivo carcinogenesis. These assays have been proposed as surrogate models for predicting the non-genotoxic carcinogenic potential of chemicals. The Bhas 42 cell transformation assay, a short-term assay(More)
Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the body's internal and external environments. We combined a literature survey with(More)
The construction of a microscope perfusion respirometer (MPR) for simultaneous recording of cellular respiration and microscopic morphology is described. All light microscope techniques for living cells (e.g. phase contrast, differential interference contrast (DIC), fluorimetry) can be applied to the monolayer cells grown on a coverslip. The main(More)