Learn More
Towards a systems toxicology-based risk assessment, we investigated molecular perturbations accompanying histopathological changes in a 28-day rat inhalation study combining transcriptomics with classical histopathology. We demonstrated reduced biological activity of a prototypic modified risk tobacco product (pMRTP) compared with the reference research(More)
In vitro cell transformation assays detect transformed cells that have acquired the distinct characteristics of malignant cells and thus model one stage of in vivo carcinogenesis. These assays have been proposed as surrogate models for predicting the non-genotoxic carcinogenic potential of chemicals. The Bhas 42 cell transformation assay, a short-term assay(More)
The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD(More)
Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic(More)
The construction of a microscope perfusion respirometer (MPR) for simultaneous recording of cellular respiration and microscopic morphology is described. All light microscope techniques for living cells (e.g. phase contrast, differential interference contrast (DIC), fluorimetry) can be applied to the monolayer cells grown on a coverslip. The main(More)
Cytokeratin (CK) polypeptides constitute the intermediate filament cytoskeleton of epithelial cells. The patterns of CK expression can be regarded as specific markers for the epithelial differentiation status. Our objective was to map the cell type-specific CK expression patterns at all representative sites of the respiratory tract of untreated rats to use(More)
BACKGROUND Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans(More)
Twenty first century systems toxicology approaches enable the discovery of biological pathways affected in response to active substances. Here, we briefly summarize current network approaches that facilitate the detailed mechanistic understanding of the impact of a given stimulus on a biological system. We also introduce our network-based method with two(More)
Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the body's internal and external environments. We combined a literature survey with(More)
We recently constructed a computable cell proliferation network (CPN) model focused on lung tissue to unravel complex biological processes and their exposure-related perturbations from molecular profiling data. The CPN consists of edges and nodes representing upstream controllers of gene expression largely generated from transcriptomics datasets using(More)